Lemma 13.4.11. Let \mathcal{D} be a pre-triangulated category. Let (X, Y, Z, f, g, h) be a distinguished triangle.
If h = 0, then there exists a right inverse s : Z \to Y to g.
For any right inverse s : Z \to Y of g the map f \oplus s : X \oplus Z \to Y is an isomorphism.
For any objects X', Z' of \mathcal{D} the triangle (X', X' \oplus Z', Z', (1, 0), (0, 1), 0) is distinguished.
Proof.
To see (1) use that \mathop{\mathrm{Hom}}\nolimits _\mathcal {D}(Z, Y) \to \mathop{\mathrm{Hom}}\nolimits _\mathcal {D}(Z, Z) \to \mathop{\mathrm{Hom}}\nolimits _\mathcal {D}(Z, X[1]) is exact by Lemma 13.4.2. By the same token, if s is as in (2), then h = 0 and the sequence
0 \to \mathop{\mathrm{Hom}}\nolimits _\mathcal {D}(W, X) \to \mathop{\mathrm{Hom}}\nolimits _\mathcal {D}(W, Y) \to \mathop{\mathrm{Hom}}\nolimits _\mathcal {D}(W, Z) \to 0
is split exact (split by s : Z \to Y). Hence by Yoneda's lemma we see that X \oplus Z \to Y is an isomorphism. The last assertion follows from TR1 and Lemma 13.4.10.
\square
Comments (2)
Comment #9835 by Elías Guisado on
Comment #9836 by Elías Guisado on
There are also: