Lemma 13.11.2. Let $\mathcal{A}$ be an abelian category. The full subcategory $\text{Ac}(\mathcal{A})$ of $K(\mathcal{A})$ consisting of acyclic complexes is a strictly full saturated triangulated subcategory of $K(\mathcal{A})$. The corresponding saturated multiplicative system (see Lemma 13.6.10) of $K(\mathcal{A})$ is the set $\text{Qis}(\mathcal{A})$ of quasi-isomorphisms. In particular, the kernel of the localization functor $Q : K(\mathcal{A}) \to \text{Qis}(\mathcal{A})^{-1}K(\mathcal{A})$ is $\text{Ac}(\mathcal{A})$ and the functor $H^0$ factors through $Q$.
Proof. We know that $H^0$ is a homological functor by Lemma 13.11.1. Thus this lemma is a special case of Lemma 13.6.11. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)