Theorem 38.26.1. Let $f : X \to S$ be locally of finite type. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module of finite type. Let $x \in X$ with image $s \in S$. The following are equivalent

1. $\mathcal{F}$ is flat at $x$ over $S$, and

2. for every $x' \in \text{Ass}_{X_ s}(\mathcal{F}_ s)$ which specializes to $x$ we have that $\mathcal{F}$ is flat at $x'$ over $S$.

Proof. It is clear that (1) implies (2) as $\mathcal{F}_{x'}$ is a localization of $\mathcal{F}_ x$ for every point which specializes to $x$. Set $A = \mathcal{O}_{S, s}$, $B = \mathcal{O}_{X, x}$ and $N = \mathcal{F}_ x$. Let $\Sigma \subset B$ be the multiplicative subset of $B$ of elements which act as nonzerodivisors on $N/\mathfrak m_ AN$. Assumption (2) implies that $\Sigma ^{-1}N$ is $A$-flat by the description of $\mathop{\mathrm{Spec}}(\Sigma ^{-1}N)$ in Lemma 38.7.1. On the other hand, the map $N \to \Sigma ^{-1}N$ is injective modulo $\mathfrak m_ A$ by construction. Hence applying Lemma 38.25.5 we win. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).