Loading [MathJax]/extensions/tex2jax.js

The Stacks project

Theorem 38.26.1. Let $f : X \to S$ be locally of finite type. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module of finite type. Let $x \in X$ with image $s \in S$. The following are equivalent

  1. $\mathcal{F}$ is flat at $x$ over $S$, and

  2. for every $x' \in \text{Ass}_{X_ s}(\mathcal{F}_ s)$ which specializes to $x$ we have that $\mathcal{F}$ is flat at $x'$ over $S$.

Proof. It is clear that (1) implies (2) as $\mathcal{F}_{x'}$ is a localization of $\mathcal{F}_ x$ for every point which specializes to $x$. Set $A = \mathcal{O}_{S, s}$, $B = \mathcal{O}_{X, x}$ and $N = \mathcal{F}_ x$. Let $\Sigma \subset B$ be the multiplicative subset of $B$ of elements which act as nonzerodivisors on $N/\mathfrak m_ AN$. Assumption (2) implies that $\Sigma ^{-1}N$ is $A$-flat by the description of $\mathop{\mathrm{Spec}}(\Sigma ^{-1}N)$ in Lemma 38.7.1. On the other hand, the map $N \to \Sigma ^{-1}N$ is injective modulo $\mathfrak m_ A$ by construction. Hence applying Lemma 38.25.5 we win. $\square$


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.