Lemma 18.39.3. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{F}$ be a sheaf of $\mathcal{O}$-modules. Let $\{ p_ i\} _{i \in I}$ be a conservative family of points of $\mathcal{C}$. Then $\mathcal{F}$ is flat if and only if $\mathcal{F}_{p_ i}$ is a flat $\mathcal{O}_{p_ i}$-module for all $i \in I$.
Proof. By Lemma 18.39.2 we see one of the implications. For the converse, use that $(\mathcal{F} \otimes _\mathcal {O} \mathcal{G})_ p = \mathcal{F}_ p \otimes _{\mathcal{O}_ p} \mathcal{G}_ p$ by Lemma 18.26.2 (as taking stalks at $p$ is given by $p^{-1}$) and Lemma 18.14.4. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)