The Stacks project

Lemma 96.12.1. Consider a $2$-commutative diagram

\[ \xymatrix{ \mathcal{X}' \ar[r]_ G \ar[d]_{F'} & \mathcal{X} \ar[d]^ F \\ \mathcal{Y}' \ar[r]^ H & \mathcal{Y} } \]

of stacks in groupoids over $(\mathit{Sch}/S)_{fppf}$ with a given $2$-isomorphism $\gamma : H \circ F' \to F \circ G$. In this situation we obtain a canonical $1$-morphism $\mathcal{H}_ d(\mathcal{X}'/\mathcal{Y}') \to \mathcal{H}_ d(\mathcal{X}/\mathcal{Y})$. This morphism is compatible with the forgetful $1$-morphisms of Examples of Stacks, Equation (

Proof. We map the object $(U, Z, y', x', \alpha ')$ to the object $(U, Z, H(y'), G(x'), \gamma \star \text{id}_ H \star \alpha ')$ where $\star $ denotes horizontal composition of $2$-morphisms, see Categories, Definition 4.28.1. To a morphism $(f, g, b, a) : (U_1, Z_1, y_1', x_1', \alpha _1') \to (U_2, Z_2, y_2', x_2', \alpha _2')$ we assign $(f, g, H(b), G(a))$. We omit the verification that this defines a functor between categories over $(\mathit{Sch}/S)_{fppf}$. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 05XN. Beware of the difference between the letter 'O' and the digit '0'.