Processing math: 100%

The Stacks project

97.12 Finite Hilbert stacks

In this section we prove some results concerning the finite Hilbert stacks \mathcal{H}_ d(\mathcal{X}/\mathcal{Y}) introduced in Examples of Stacks, Section 95.18.

Lemma 97.12.1. Consider a 2-commutative diagram

\xymatrix{ \mathcal{X}' \ar[r]_ G \ar[d]_{F'} & \mathcal{X} \ar[d]^ F \\ \mathcal{Y}' \ar[r]^ H & \mathcal{Y} }

of stacks in groupoids over (\mathit{Sch}/S)_{fppf} with a given 2-isomorphism \gamma : H \circ F' \to F \circ G. In this situation we obtain a canonical 1-morphism \mathcal{H}_ d(\mathcal{X}'/\mathcal{Y}') \to \mathcal{H}_ d(\mathcal{X}/\mathcal{Y}). This morphism is compatible with the forgetful 1-morphisms of Examples of Stacks, Equation (95.18.2.1).

Proof. We map the object (U, Z, y', x', \alpha ') to the object (U, Z, H(y'), G(x'), \gamma \star \text{id}_ H \star \alpha ') where \star denotes horizontal composition of 2-morphisms, see Categories, Definition 4.28.1. To a morphism (f, g, b, a) : (U_1, Z_1, y_1', x_1', \alpha _1') \to (U_2, Z_2, y_2', x_2', \alpha _2') we assign (f, g, H(b), G(a)). We omit the verification that this defines a functor between categories over (\mathit{Sch}/S)_{fppf}. \square

Lemma 97.12.2. In the situation of Lemma 97.12.1 assume that the given square is 2-cartesian. Then the diagram

\xymatrix{ \mathcal{H}_ d(\mathcal{X}'/\mathcal{Y}') \ar[r] \ar[d] & \mathcal{H}_ d(\mathcal{X}/\mathcal{Y}) \ar[d] \\ \mathcal{Y}' \ar[r] & \mathcal{Y} }

is 2-cartesian.

Proof. We get a 2-commutative diagram by Lemma 97.12.1 and hence we get a 1-morphism (i.e., a functor)

\mathcal{H}_ d(\mathcal{X}'/\mathcal{Y}') \longrightarrow \mathcal{Y}' \times _\mathcal {Y} \mathcal{H}_ d(\mathcal{X}/\mathcal{Y})

We indicate why this functor is essentially surjective. Namely, an object of the category on the right hand side is given by a scheme U over S, an object y' of \mathcal{Y}'_ U, an object (U, Z, y, x, \alpha ) of \mathcal{H}_ d(\mathcal{X}/\mathcal{Y}) over U and an isomorphism H(y') \to y in \mathcal{Y}_ U. The assumption means exactly that there exists an object x' of \mathcal{X}'_ Z such that there exist isomorphisms G(x') \cong x and \alpha ' : y'|_ Z \to F'(x') compatible with \alpha . Then we see that (U, Z, y', x', \alpha ') is an object of \mathcal{H}_ d(\mathcal{X}'/\mathcal{Y}') over U. Details omitted. \square

Lemma 97.12.3. In the situation of Lemma 97.12.1 assume

  1. \mathcal{Y}' = \mathcal{Y} and H = \text{id}_\mathcal {Y},

  2. G is representable by algebraic spaces and étale.

Then \mathcal{H}_ d(\mathcal{X}'/\mathcal{Y}) \to \mathcal{H}_ d(\mathcal{X}/\mathcal{Y}) is representable by algebraic spaces and étale. If G is also surjective, then \mathcal{H}_ d(\mathcal{X}'/\mathcal{Y}) \to \mathcal{H}_ d(\mathcal{X}/\mathcal{Y}) is surjective.

Proof. Let U be a scheme and let \xi = (U, Z, y, x, \alpha ) be an object of \mathcal{H}_ d(\mathcal{X}/\mathcal{Y}) over U. We have to prove that the 2-fibre product

97.12.3.1
\begin{equation} \label{criteria-equation-to-show} (\mathit{Sch}/U)_{fppf} \times _{\xi , \mathcal{H}_ d(\mathcal{X}/\mathcal{Y})} \mathcal{H}_ d(\mathcal{X}'/\mathcal{Y}) \end{equation}

is representable by an algebraic space étale over U. An object of this over U' corresponds to an object x' in the fibre category of \mathcal{X}' over Z_{U'} such that G(x') \cong x|_{Z_{U'}}. By assumption the 2-fibre product

(\mathit{Sch}/Z)_{fppf} \times _{x, \mathcal{X}} \mathcal{X}'

is representable by an algebraic space W such that the projection W \to Z is étale. Then (97.12.3.1) is representable by the algebraic space F parametrizing sections of W \to Z over U introduced in Lemma 97.9.2. Since F \to U is étale we conclude that \mathcal{H}_ d(\mathcal{X}'/\mathcal{Y}) \to \mathcal{H}_ d(\mathcal{X}/\mathcal{Y}) is representable by algebraic spaces and étale. Finally, if \mathcal{X}' \to \mathcal{X} is surjective also, then W \to Z is surjective, and hence F \to U is surjective by Lemma 97.9.1. Thus in this case \mathcal{H}_ d(\mathcal{X}'/\mathcal{Y}) \to \mathcal{H}_ d(\mathcal{X}/\mathcal{Y}) is also surjective. \square

Lemma 97.12.4. In the situation of Lemma 97.12.1. Assume that G, H are representable by algebraic spaces and étale. Then \mathcal{H}_ d(\mathcal{X}'/\mathcal{Y}') \to \mathcal{H}_ d(\mathcal{X}/\mathcal{Y}) is representable by algebraic spaces and étale. If also H is surjective and the induced functor \mathcal{X}' \to \mathcal{Y}' \times _\mathcal {Y} \mathcal{X} is surjective, then \mathcal{H}_ d(\mathcal{X}'/\mathcal{Y}') \to \mathcal{H}_ d(\mathcal{X}/\mathcal{Y}) is surjective.

Proof. Set \mathcal{X}'' = \mathcal{Y}' \times _\mathcal {Y} \mathcal{X}. By Lemma 97.4.1 the 1-morphism \mathcal{X}' \to \mathcal{X}'' is representable by algebraic spaces and étale (in particular the condition in the second statement of the lemma that \mathcal{X}' \to \mathcal{X}'' be surjective makes sense). We obtain a 2-commutative diagram

\xymatrix{ \mathcal{X}' \ar[r] \ar[d] & \mathcal{X}'' \ar[r] \ar[d] & \mathcal{X} \ar[d] \\ \mathcal{Y}' \ar[r] & \mathcal{Y}' \ar[r] & \mathcal{Y} }

It follows from Lemma 97.12.2 that \mathcal{H}_ d(\mathcal{X}''/\mathcal{Y}') is the base change of \mathcal{H}_ d(\mathcal{X}/\mathcal{Y}) by \mathcal{Y}' \to \mathcal{Y}. In particular we see that \mathcal{H}_ d(\mathcal{X}''/\mathcal{Y}') \to \mathcal{H}_ d(\mathcal{X}/\mathcal{Y}) is representable by algebraic spaces and étale, see Algebraic Stacks, Lemma 94.10.6. Moreover, it is also surjective if H is. Hence if we can show that the result holds for the left square in the diagram, then we're done. In this way we reduce to the case where \mathcal{Y}' = \mathcal{Y} which is the content of Lemma 97.12.3. \square

Lemma 97.12.5. Let F : \mathcal{X} \to \mathcal{Y} be a 1-morphism of stacks in groupoids over (\mathit{Sch}/S)_{fppf}. Assume that \Delta : \mathcal{Y} \to \mathcal{Y} \times \mathcal{Y} is representable by algebraic spaces. Then

\mathcal{H}_ d(\mathcal{X}/\mathcal{Y}) \longrightarrow \mathcal{H}_ d(\mathcal{X}) \times \mathcal{Y}

see Examples of Stacks, Equation (95.18.2.1) is representable by algebraic spaces.

Proof. Let U be a scheme and let \xi = (U, Z, p, x, 1) be an object of \mathcal{H}_ d(\mathcal{X}) = \mathcal{H}_ d(\mathcal{X}/S) over U. Here p is just the structure morphism of U. The fifth component 1 exists and is unique since everything is over S. Also, let y be an object of \mathcal{Y} over U. We have to show the 2-fibre product

97.12.5.1
\begin{equation} \label{criteria-equation-res-isom} (\mathit{Sch}/U)_{fppf} \times _{\xi \times y, \mathcal{H}_ d(\mathcal{X}) \times \mathcal{Y}} \mathcal{H}_ d(\mathcal{X}/\mathcal{Y}) \end{equation}

is representable by an algebraic space. To explain why this is so we introduce

I = \mathit{Isom}_\mathcal {Y}(y|_ Z, F(x))

which is an algebraic space over Z by assumption. Let a : U' \to U be a scheme over U. What does it mean to give an object of the fibre category of (97.12.5.1) over U'? Well, it means that we have an object \xi ' = (U', Z', y', x', \alpha ') of \mathcal{H}_ d(\mathcal{X}/\mathcal{Y}) over U' and isomorphisms (U', Z', p', x', 1) \cong (U, Z, p, x, 1)|_{U'} and y' \cong y|_{U'}. Thus \xi ' is isomorphic to (U', U' \times _{a, U} Z, a^*y, x|_{U' \times _{a, U} Z}, \alpha ) for some morphism

\alpha : a^*y|_{U' \times _{a, U} Z} \longrightarrow F(x|_{U' \times _{a, U} Z})

in the fibre category of \mathcal{Y} over U' \times _{a, U} Z. Hence we can view \alpha as a morphism b : U' \times _{a, U} Z \to I. In this way we see that (97.12.5.1) is representable by \text{Res}_{Z/U}(I) which is an algebraic space by Proposition 97.11.5. \square

The following lemma is a (partial) generalization of Lemma 97.12.3.

Lemma 97.12.6. Let F : \mathcal{X} \to \mathcal{Y} and G : \mathcal{X}' \to \mathcal{X} be 1-morphisms of stacks in groupoids over (\mathit{Sch}/S)_{fppf}. If G is representable by algebraic spaces, then the 1-morphism

\mathcal{H}_ d(\mathcal{X}'/\mathcal{Y}) \longrightarrow \mathcal{H}_ d(\mathcal{X}/\mathcal{Y})

is representable by algebraic spaces.

Proof. Let U be a scheme and let \xi = (U, Z, y, x, \alpha ) be an object of \mathcal{H}_ d(\mathcal{X}/\mathcal{Y}) over U. We have to prove that the 2-fibre product

97.12.6.1
\begin{equation} \label{criteria-equation-to-show-again} (\mathit{Sch}/U)_{fppf} \times _{\xi , \mathcal{H}_ d(\mathcal{X}/\mathcal{Y})} \mathcal{H}_ d(\mathcal{X}'/\mathcal{Y}) \end{equation}

is representable by an algebraic space étale over U. An object of this over a : U' \to U corresponds to an object x' of \mathcal{X}' over U' \times _{a, U} Z such that G(x') \cong x|_{U' \times _{a, U} Z}. By assumption the 2-fibre product

(\mathit{Sch}/Z)_{fppf} \times _{x, \mathcal{X}} \mathcal{X}'

is representable by an algebraic space X over Z. It follows that (97.12.6.1) is representable by \text{Res}_{Z/U}(X), which is an algebraic space by Proposition 97.11.5. \square

Lemma 97.12.7. Let F : \mathcal{X} \to \mathcal{Y} be a 1-morphism of stacks in groupoids over (\mathit{Sch}/S)_{fppf}. Assume F is representable by algebraic spaces and locally of finite presentation. Then

p : \mathcal{H}_ d(\mathcal{X}/\mathcal{Y}) \to \mathcal{Y}

is limit preserving on objects.

Proof. This means we have to show the following: Given

  1. an affine scheme U = \mathop{\mathrm{lim}}\nolimits _ i U_ i which is written as the directed limit of affine schemes U_ i over S,

  2. an object y_ i of \mathcal{Y} over U_ i for some i, and

  3. an object \Xi = (U, Z, y, x, \alpha ) of \mathcal{H}_ d(\mathcal{X}/\mathcal{Y}) over U such that y = y_ i|_ U,

then there exists an i' \geq i and an object \Xi _{i'} = (U_{i'}, Z_{i'}, y_{i'}, x_{i'}, \alpha _{i'}) of \mathcal{H}_ d(\mathcal{X}/\mathcal{Y}) over U_{i'} with \Xi _{i'}|_ U = \Xi and y_{i'} = y_ i|_{U_{i'}}. Namely, the last two equalities will take care of the commutativity of (97.5.0.1).

Let X_{y_ i} \to U_ i be an algebraic space representing the 2-fibre product

(\mathit{Sch}/U_ i)_{fppf} \times _{y_ i, \mathcal{Y}, F} \mathcal{X}.

Note that X_{y_ i} \to U_ i is locally of finite presentation by our assumption on F. Write \Xi . It is clear that \xi = (Z, Z \to U_ i, x, \alpha ) is an object of the 2-fibre product displayed above, hence \xi gives rise to a morphism f_\xi : Z \to X_{y_ i} of algebraic spaces over U_ i (since X_{y_ i} is the functor of isomorphisms classes of objects of (\mathit{Sch}/U_ i)_{fppf} \times _{y, \mathcal{Y}, F} \mathcal{X}, see Algebraic Stacks, Lemma 94.8.2). By Limits, Lemmas 32.10.1 and 32.8.8 there exists an i' \geq i and a finite locally free morphism Z_{i'} \to U_{i'} of degree d whose base change to U is Z. By Limits of Spaces, Proposition 70.3.10 we may, after replacing i' by a bigger index, assume there exists a morphism f_{i'} : Z_{i'} \to X_{y_ i} such that

\xymatrix{ Z \ar[d] \ar[r] \ar@/^3ex/[rr]^{f_\xi } & Z_{i'} \ar[d] \ar[r]_{f_{i'}} & X_{y_ i} \ar[d] \\ U \ar[r] & U_{i'} \ar[r] & U_ i }

is commutative. We set \Xi _{i'} = (U_{i'}, Z_{i'}, y_{i'}, x_{i'}, \alpha _{i'}) where

  1. y_{i'} is the object of \mathcal{Y} over U_{i'} which is the pullback of y_ i to U_{i'},

  2. x_{i'} is the object of \mathcal{X} over Z_{i'} corresponding via the 2-Yoneda lemma to the 1-morphism

    (\mathit{Sch}/Z_{i'})_{fppf} \to \mathcal{S}_{X_{y_ i}} \to (\mathit{Sch}/U_ i)_{fppf} \times _{y_ i, \mathcal{Y}, F} \mathcal{X} \to \mathcal{X}

    where the middle arrow is the equivalence which defines X_{y_ i} (notation as in Algebraic Stacks, Sections 94.8 and 94.7).

  3. \alpha _{i'} : y_{i'}|_{Z_{i'}} \to F(x_{i'}) is the isomorphism coming from the 2-commutativity of the diagram

    \xymatrix{ (\mathit{Sch}/Z_{i'})_{fppf} \ar[r] \ar[rd] & (\mathit{Sch}/U_ i)_{fppf} \times _{y_ i, \mathcal{Y}, F} \mathcal{X} \ar[r] \ar[d] & \mathcal{X} \ar[d]^ F \\ & (\mathit{Sch}/U_{i'})_{fppf} \ar[r] & \mathcal{Y} }

Recall that f_\xi : Z \to X_{y_ i} was the morphism corresponding to the object \xi = (Z, Z \to U_ i, x, \alpha ) of (\mathit{Sch}/U_ i)_{fppf} \times _{y_ i, \mathcal{Y}, F} \mathcal{X} over Z. By construction f_{i'} is the morphism corresponding to the object \xi _{i'} = (Z_{i'}, Z_{i'} \to U_ i, x_{i'}, \alpha _{i'}). As f_\xi = f_{i'} \circ (Z \to Z_{i'}) we see that the object \xi _{i'} = (Z_{i'}, Z_{i'} \to U_ i, x_{i'}, \alpha _{i'}) pulls back to \xi over Z. Thus x_{i'} pulls back to x and \alpha _{i'} pulls back to \alpha . This means that \Xi _{i'} pulls back to \Xi over U and we win. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.