97.12 Finite Hilbert stacks
In this section we prove some results concerning the finite Hilbert stacks \mathcal{H}_ d(\mathcal{X}/\mathcal{Y}) introduced in Examples of Stacks, Section 95.18.
Lemma 97.12.1. Consider a 2-commutative diagram
\xymatrix{ \mathcal{X}' \ar[r]_ G \ar[d]_{F'} & \mathcal{X} \ar[d]^ F \\ \mathcal{Y}' \ar[r]^ H & \mathcal{Y} }
of stacks in groupoids over (\mathit{Sch}/S)_{fppf} with a given 2-isomorphism \gamma : H \circ F' \to F \circ G. In this situation we obtain a canonical 1-morphism \mathcal{H}_ d(\mathcal{X}'/\mathcal{Y}') \to \mathcal{H}_ d(\mathcal{X}/\mathcal{Y}). This morphism is compatible with the forgetful 1-morphisms of Examples of Stacks, Equation (95.18.2.1).
Proof.
We map the object (U, Z, y', x', \alpha ') to the object (U, Z, H(y'), G(x'), \gamma \star \text{id}_ H \star \alpha ') where \star denotes horizontal composition of 2-morphisms, see Categories, Definition 4.28.1. To a morphism (f, g, b, a) : (U_1, Z_1, y_1', x_1', \alpha _1') \to (U_2, Z_2, y_2', x_2', \alpha _2') we assign (f, g, H(b), G(a)). We omit the verification that this defines a functor between categories over (\mathit{Sch}/S)_{fppf}.
\square
Lemma 97.12.2. In the situation of Lemma 97.12.1 assume that the given square is 2-cartesian. Then the diagram
\xymatrix{ \mathcal{H}_ d(\mathcal{X}'/\mathcal{Y}') \ar[r] \ar[d] & \mathcal{H}_ d(\mathcal{X}/\mathcal{Y}) \ar[d] \\ \mathcal{Y}' \ar[r] & \mathcal{Y} }
is 2-cartesian.
Proof.
We get a 2-commutative diagram by Lemma 97.12.1 and hence we get a 1-morphism (i.e., a functor)
\mathcal{H}_ d(\mathcal{X}'/\mathcal{Y}') \longrightarrow \mathcal{Y}' \times _\mathcal {Y} \mathcal{H}_ d(\mathcal{X}/\mathcal{Y})
We indicate why this functor is essentially surjective. Namely, an object of the category on the right hand side is given by a scheme U over S, an object y' of \mathcal{Y}'_ U, an object (U, Z, y, x, \alpha ) of \mathcal{H}_ d(\mathcal{X}/\mathcal{Y}) over U and an isomorphism H(y') \to y in \mathcal{Y}_ U. The assumption means exactly that there exists an object x' of \mathcal{X}'_ Z such that there exist isomorphisms G(x') \cong x and \alpha ' : y'|_ Z \to F'(x') compatible with \alpha . Then we see that (U, Z, y', x', \alpha ') is an object of \mathcal{H}_ d(\mathcal{X}'/\mathcal{Y}') over U. Details omitted.
\square
Lemma 97.12.3. In the situation of Lemma 97.12.1 assume
\mathcal{Y}' = \mathcal{Y} and H = \text{id}_\mathcal {Y},
G is representable by algebraic spaces and étale.
Then \mathcal{H}_ d(\mathcal{X}'/\mathcal{Y}) \to \mathcal{H}_ d(\mathcal{X}/\mathcal{Y}) is representable by algebraic spaces and étale. If G is also surjective, then \mathcal{H}_ d(\mathcal{X}'/\mathcal{Y}) \to \mathcal{H}_ d(\mathcal{X}/\mathcal{Y}) is surjective.
Proof.
Let U be a scheme and let \xi = (U, Z, y, x, \alpha ) be an object of \mathcal{H}_ d(\mathcal{X}/\mathcal{Y}) over U. We have to prove that the 2-fibre product
97.12.3.1
\begin{equation} \label{criteria-equation-to-show} (\mathit{Sch}/U)_{fppf} \times _{\xi , \mathcal{H}_ d(\mathcal{X}/\mathcal{Y})} \mathcal{H}_ d(\mathcal{X}'/\mathcal{Y}) \end{equation}
is representable by an algebraic space étale over U. An object of this over U' corresponds to an object x' in the fibre category of \mathcal{X}' over Z_{U'} such that G(x') \cong x|_{Z_{U'}}. By assumption the 2-fibre product
(\mathit{Sch}/Z)_{fppf} \times _{x, \mathcal{X}} \mathcal{X}'
is representable by an algebraic space W such that the projection W \to Z is étale. Then (97.12.3.1) is representable by the algebraic space F parametrizing sections of W \to Z over U introduced in Lemma 97.9.2. Since F \to U is étale we conclude that \mathcal{H}_ d(\mathcal{X}'/\mathcal{Y}) \to \mathcal{H}_ d(\mathcal{X}/\mathcal{Y}) is representable by algebraic spaces and étale. Finally, if \mathcal{X}' \to \mathcal{X} is surjective also, then W \to Z is surjective, and hence F \to U is surjective by Lemma 97.9.1. Thus in this case \mathcal{H}_ d(\mathcal{X}'/\mathcal{Y}) \to \mathcal{H}_ d(\mathcal{X}/\mathcal{Y}) is also surjective.
\square
Lemma 97.12.4. In the situation of Lemma 97.12.1. Assume that G, H are representable by algebraic spaces and étale. Then \mathcal{H}_ d(\mathcal{X}'/\mathcal{Y}') \to \mathcal{H}_ d(\mathcal{X}/\mathcal{Y}) is representable by algebraic spaces and étale. If also H is surjective and the induced functor \mathcal{X}' \to \mathcal{Y}' \times _\mathcal {Y} \mathcal{X} is surjective, then \mathcal{H}_ d(\mathcal{X}'/\mathcal{Y}') \to \mathcal{H}_ d(\mathcal{X}/\mathcal{Y}) is surjective.
Proof.
Set \mathcal{X}'' = \mathcal{Y}' \times _\mathcal {Y} \mathcal{X}. By Lemma 97.4.1 the 1-morphism \mathcal{X}' \to \mathcal{X}'' is representable by algebraic spaces and étale (in particular the condition in the second statement of the lemma that \mathcal{X}' \to \mathcal{X}'' be surjective makes sense). We obtain a 2-commutative diagram
\xymatrix{ \mathcal{X}' \ar[r] \ar[d] & \mathcal{X}'' \ar[r] \ar[d] & \mathcal{X} \ar[d] \\ \mathcal{Y}' \ar[r] & \mathcal{Y}' \ar[r] & \mathcal{Y} }
It follows from Lemma 97.12.2 that \mathcal{H}_ d(\mathcal{X}''/\mathcal{Y}') is the base change of \mathcal{H}_ d(\mathcal{X}/\mathcal{Y}) by \mathcal{Y}' \to \mathcal{Y}. In particular we see that \mathcal{H}_ d(\mathcal{X}''/\mathcal{Y}') \to \mathcal{H}_ d(\mathcal{X}/\mathcal{Y}) is representable by algebraic spaces and étale, see Algebraic Stacks, Lemma 94.10.6. Moreover, it is also surjective if H is. Hence if we can show that the result holds for the left square in the diagram, then we're done. In this way we reduce to the case where \mathcal{Y}' = \mathcal{Y} which is the content of Lemma 97.12.3.
\square
Lemma 97.12.5. Let F : \mathcal{X} \to \mathcal{Y} be a 1-morphism of stacks in groupoids over (\mathit{Sch}/S)_{fppf}. Assume that \Delta : \mathcal{Y} \to \mathcal{Y} \times \mathcal{Y} is representable by algebraic spaces. Then
\mathcal{H}_ d(\mathcal{X}/\mathcal{Y}) \longrightarrow \mathcal{H}_ d(\mathcal{X}) \times \mathcal{Y}
see Examples of Stacks, Equation (95.18.2.1) is representable by algebraic spaces.
Proof.
Let U be a scheme and let \xi = (U, Z, p, x, 1) be an object of \mathcal{H}_ d(\mathcal{X}) = \mathcal{H}_ d(\mathcal{X}/S) over U. Here p is just the structure morphism of U. The fifth component 1 exists and is unique since everything is over S. Also, let y be an object of \mathcal{Y} over U. We have to show the 2-fibre product
97.12.5.1
\begin{equation} \label{criteria-equation-res-isom} (\mathit{Sch}/U)_{fppf} \times _{\xi \times y, \mathcal{H}_ d(\mathcal{X}) \times \mathcal{Y}} \mathcal{H}_ d(\mathcal{X}/\mathcal{Y}) \end{equation}
is representable by an algebraic space. To explain why this is so we introduce
I = \mathit{Isom}_\mathcal {Y}(y|_ Z, F(x))
which is an algebraic space over Z by assumption. Let a : U' \to U be a scheme over U. What does it mean to give an object of the fibre category of (97.12.5.1) over U'? Well, it means that we have an object \xi ' = (U', Z', y', x', \alpha ') of \mathcal{H}_ d(\mathcal{X}/\mathcal{Y}) over U' and isomorphisms (U', Z', p', x', 1) \cong (U, Z, p, x, 1)|_{U'} and y' \cong y|_{U'}. Thus \xi ' is isomorphic to (U', U' \times _{a, U} Z, a^*y, x|_{U' \times _{a, U} Z}, \alpha ) for some morphism
\alpha : a^*y|_{U' \times _{a, U} Z} \longrightarrow F(x|_{U' \times _{a, U} Z})
in the fibre category of \mathcal{Y} over U' \times _{a, U} Z. Hence we can view \alpha as a morphism b : U' \times _{a, U} Z \to I. In this way we see that (97.12.5.1) is representable by \text{Res}_{Z/U}(I) which is an algebraic space by Proposition 97.11.5.
\square
The following lemma is a (partial) generalization of Lemma 97.12.3.
Lemma 97.12.6. Let F : \mathcal{X} \to \mathcal{Y} and G : \mathcal{X}' \to \mathcal{X} be 1-morphisms of stacks in groupoids over (\mathit{Sch}/S)_{fppf}. If G is representable by algebraic spaces, then the 1-morphism
\mathcal{H}_ d(\mathcal{X}'/\mathcal{Y}) \longrightarrow \mathcal{H}_ d(\mathcal{X}/\mathcal{Y})
is representable by algebraic spaces.
Proof.
Let U be a scheme and let \xi = (U, Z, y, x, \alpha ) be an object of \mathcal{H}_ d(\mathcal{X}/\mathcal{Y}) over U. We have to prove that the 2-fibre product
97.12.6.1
\begin{equation} \label{criteria-equation-to-show-again} (\mathit{Sch}/U)_{fppf} \times _{\xi , \mathcal{H}_ d(\mathcal{X}/\mathcal{Y})} \mathcal{H}_ d(\mathcal{X}'/\mathcal{Y}) \end{equation}
is representable by an algebraic space étale over U. An object of this over a : U' \to U corresponds to an object x' of \mathcal{X}' over U' \times _{a, U} Z such that G(x') \cong x|_{U' \times _{a, U} Z}. By assumption the 2-fibre product
(\mathit{Sch}/Z)_{fppf} \times _{x, \mathcal{X}} \mathcal{X}'
is representable by an algebraic space X over Z. It follows that (97.12.6.1) is representable by \text{Res}_{Z/U}(X), which is an algebraic space by Proposition 97.11.5.
\square
Lemma 97.12.7. Let F : \mathcal{X} \to \mathcal{Y} be a 1-morphism of stacks in groupoids over (\mathit{Sch}/S)_{fppf}. Assume F is representable by algebraic spaces and locally of finite presentation. Then
p : \mathcal{H}_ d(\mathcal{X}/\mathcal{Y}) \to \mathcal{Y}
is limit preserving on objects.
Proof.
This means we have to show the following: Given
an affine scheme U = \mathop{\mathrm{lim}}\nolimits _ i U_ i which is written as the directed limit of affine schemes U_ i over S,
an object y_ i of \mathcal{Y} over U_ i for some i, and
an object \Xi = (U, Z, y, x, \alpha ) of \mathcal{H}_ d(\mathcal{X}/\mathcal{Y}) over U such that y = y_ i|_ U,
then there exists an i' \geq i and an object \Xi _{i'} = (U_{i'}, Z_{i'}, y_{i'}, x_{i'}, \alpha _{i'}) of \mathcal{H}_ d(\mathcal{X}/\mathcal{Y}) over U_{i'} with \Xi _{i'}|_ U = \Xi and y_{i'} = y_ i|_{U_{i'}}. Namely, the last two equalities will take care of the commutativity of (97.5.0.1).
Let X_{y_ i} \to U_ i be an algebraic space representing the 2-fibre product
(\mathit{Sch}/U_ i)_{fppf} \times _{y_ i, \mathcal{Y}, F} \mathcal{X}.
Note that X_{y_ i} \to U_ i is locally of finite presentation by our assumption on F. Write \Xi . It is clear that \xi = (Z, Z \to U_ i, x, \alpha ) is an object of the 2-fibre product displayed above, hence \xi gives rise to a morphism f_\xi : Z \to X_{y_ i} of algebraic spaces over U_ i (since X_{y_ i} is the functor of isomorphisms classes of objects of (\mathit{Sch}/U_ i)_{fppf} \times _{y, \mathcal{Y}, F} \mathcal{X}, see Algebraic Stacks, Lemma 94.8.2). By Limits, Lemmas 32.10.1 and 32.8.8 there exists an i' \geq i and a finite locally free morphism Z_{i'} \to U_{i'} of degree d whose base change to U is Z. By Limits of Spaces, Proposition 70.3.10 we may, after replacing i' by a bigger index, assume there exists a morphism f_{i'} : Z_{i'} \to X_{y_ i} such that
\xymatrix{ Z \ar[d] \ar[r] \ar@/^3ex/[rr]^{f_\xi } & Z_{i'} \ar[d] \ar[r]_{f_{i'}} & X_{y_ i} \ar[d] \\ U \ar[r] & U_{i'} \ar[r] & U_ i }
is commutative. We set \Xi _{i'} = (U_{i'}, Z_{i'}, y_{i'}, x_{i'}, \alpha _{i'}) where
y_{i'} is the object of \mathcal{Y} over U_{i'} which is the pullback of y_ i to U_{i'},
x_{i'} is the object of \mathcal{X} over Z_{i'} corresponding via the 2-Yoneda lemma to the 1-morphism
(\mathit{Sch}/Z_{i'})_{fppf} \to \mathcal{S}_{X_{y_ i}} \to (\mathit{Sch}/U_ i)_{fppf} \times _{y_ i, \mathcal{Y}, F} \mathcal{X} \to \mathcal{X}
where the middle arrow is the equivalence which defines X_{y_ i} (notation as in Algebraic Stacks, Sections 94.8 and 94.7).
\alpha _{i'} : y_{i'}|_{Z_{i'}} \to F(x_{i'}) is the isomorphism coming from the 2-commutativity of the diagram
\xymatrix{ (\mathit{Sch}/Z_{i'})_{fppf} \ar[r] \ar[rd] & (\mathit{Sch}/U_ i)_{fppf} \times _{y_ i, \mathcal{Y}, F} \mathcal{X} \ar[r] \ar[d] & \mathcal{X} \ar[d]^ F \\ & (\mathit{Sch}/U_{i'})_{fppf} \ar[r] & \mathcal{Y} }
Recall that f_\xi : Z \to X_{y_ i} was the morphism corresponding to the object \xi = (Z, Z \to U_ i, x, \alpha ) of (\mathit{Sch}/U_ i)_{fppf} \times _{y_ i, \mathcal{Y}, F} \mathcal{X} over Z. By construction f_{i'} is the morphism corresponding to the object \xi _{i'} = (Z_{i'}, Z_{i'} \to U_ i, x_{i'}, \alpha _{i'}). As f_\xi = f_{i'} \circ (Z \to Z_{i'}) we see that the object \xi _{i'} = (Z_{i'}, Z_{i'} \to U_ i, x_{i'}, \alpha _{i'}) pulls back to \xi over Z. Thus x_{i'} pulls back to x and \alpha _{i'} pulls back to \alpha . This means that \Xi _{i'} pulls back to \Xi over U and we win.
\square
Comments (0)