Lemma 13.19.9. Let $\mathcal{A}$ be an abelian category. Assume $\mathcal{A}$ has enough projectives. For any short exact sequence $0 \to A^\bullet \to B^\bullet \to C^\bullet \to 0$ of $\text{Comp}^{+}(\mathcal{A})$ there exists a commutative diagram in $\text{Comp}^{+}(\mathcal{A})$

where the vertical arrows are projective resolutions and the rows are short exact sequences of complexes. In fact, given any projective resolution $P^\bullet \to C^\bullet $ we may assume $P_3^\bullet = P^\bullet $.

## Comments (0)