Lemma 15.62.13. Let $A \to B$ be a ring map. Let $K^\bullet $ be an $m$-pseudo-coherent (resp. pseudo-coherent) complex of $A$-modules. Then $K^\bullet \otimes _ A^{\mathbf{L}} B$ is an $m$-pseudo-coherent (resp. pseudo-coherent) complex of $B$-modules.

**Proof.**
First we note that the statement of the lemma makes sense as $K^\bullet $ is bounded above and hence $K^\bullet \otimes _ A^{\mathbf{L}} B$ is defined by Equation (15.56.0.2). Having said this, choose a bounded complex $E^\bullet $ of finite free $A$-modules and $\alpha : E^\bullet \to K^\bullet $ with $H^ i(\alpha )$ an isomorphism for $i > m$ and surjective for $i = m$. Then the cone $C(\alpha )^\bullet $ is acyclic in degrees $\geq m$. Since $-\otimes _ A^{\mathbf{L}} B$ is an exact functor we get a distinguished triangle

of complexes of $B$-modules. By the dual to Derived Categories, Lemma 13.17.1 we see that $H^ i(C(\alpha )^\bullet \otimes _ A^{\mathbf{L}} B) = 0$ for $i \geq m$. Since $E^\bullet $ is a complex of projective $R$-modules we see that $E^\bullet \otimes _ A^{\mathbf{L}} B = E^\bullet \otimes _ A B$ and hence

is a morphism of complexes of $B$-modules that witnesses the fact that $K^\bullet \otimes _ A^{\mathbf{L}} B$ is $m$-pseudo-coherent. The case of pseudo-coherent complexes follows from the case of $m$-pseudo-coherent complexes via Lemma 15.62.5. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)