Loading [MathJax]/extensions/tex2jax.js

The Stacks project

Lemma 15.74.2. Let $K^\bullet $ be an object of $D(R)$. The following are equivalent

  1. $K^\bullet $ is perfect, and

  2. $K^\bullet $ is pseudo-coherent and has finite tor dimension.

If (1) and (2) hold and $K^\bullet $ has tor-amplitude in $[a, b]$, then $K^\bullet $ is quasi-isomorphic to a complex $E^\bullet $ of finite projective $R$-modules with $E^ i = 0$ for $i \not\in [a, b]$.

Proof. It is clear that (1) implies (2), see Lemmas 15.64.5 and 15.66.3. Assume (2) holds and that $K^\bullet $ has tor-amplitude in $[a, b]$. In particular, $H^ i(K^\bullet ) = 0$ for $i > b$. Choose a complex $F^\bullet $ of finite free $R$-modules with $F^ i = 0$ for $i > b$ and a quasi-isomorphism $F^\bullet \to K^\bullet $ (Lemma 15.64.5). Set $E^\bullet = \tau _{\geq a}F^\bullet $. Note that $E^ i$ is finite free except $E^ a$ which is a finitely presented $R$-module. By Lemma 15.66.2 $E^ a$ is flat. Hence by Algebra, Lemma 10.78.2 we see that $E^ a$ is finite projective. $\square$


Comments (0)

There are also:

  • 7 comment(s) on Section 15.74: Perfect complexes

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.