Lemma 15.81.12. Let $R \to A$ be a finite type ring map. Let $m \in \mathbf{Z}$. Let $K^\bullet $ be a complex of $A$-modules which is $m$-pseudo-coherent (resp. pseudo-coherent) relative to $R$. Let $R \to R'$ be a ring map such that $A$ and $R'$ are Tor independent over $R$. Set $A' = A \otimes _ R R'$. Then $K^\bullet \otimes _ A^{\mathbf{L}} A'$ is $m$-pseudo-coherent (resp. pseudo-coherent) relative to $R'$.
Proof. Choose a surjection $R[x_1, \ldots , x_ n] \to A$. Note that
\[ K^\bullet \otimes _ A^{\mathbf{L}} A' = K^\bullet \otimes _ R^{\mathbf{L}} R' = K^\bullet \otimes _{R[x_1, \ldots , x_ n]}^{\mathbf{L}} R'[x_1, \ldots , x_ n] \]
by Lemma 15.61.2 applied twice. Hence we win by Lemma 15.64.12. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)