Lemma 37.11.8. Let $f : X \to Y$ be a formally smooth morphism of schemes. Then $\Omega _{X/Y}$ is locally projective on $X$.
Proof. Choose $U \subset X$ and $V \subset Y$ affine open such that $f(U) \subset V$. By Lemma 37.11.5 $f|_ U : U \to V$ is formally smooth. Hence $\Gamma (V, \mathcal{O}_ V) \to \Gamma (U, \mathcal{O}_ U)$ is a formally smooth ring map, see Lemma 37.11.6. Hence by Algebra, Lemma 10.138.7 the $\Gamma (U, \mathcal{O}_ U)$-module $\Omega _{\Gamma (U, \mathcal{O}_ U)/\Gamma (V, \mathcal{O}_ V)}$ is projective. Hence $\Omega _{U/V}$ is locally projective, see Properties, Section 28.21. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: