The Stacks project

Lemma 37.60.21. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of schemes over $S$. Assume both $X$ and $Y$ are flat and locally of finite presentation over $S$. Then the set

\[ \{ x \in X \mid f\text{ Koszul at }x\} . \]

is open in $X$ and its formation commutes with arbitrary base change $S' \to S$.

Proof. The set is open by definition (see Definition 37.60.2). Let $S' \to S$ be a morphism of schemes. Set $X' = S' \times _ S X$, $Y' = S' \times _ S Y$, and denote $f' : X' \to Y'$ the base change of $f$. Let $x' \in X'$ be a point such that $f'$ is Koszul at $x'$. Denote $s' \in S'$, $x \in X$, $y' \in Y'$ , $y \in Y$, $s \in S$ the image of $x'$. Note that $f$ is locally of finite presentation, see Morphisms, Lemma 29.21.11. Hence we may choose an affine neighbourhood $U \subset X$ of $x$ and an immersion $i : U \to \mathbf{A}^ n_ Y$. Denote $U' = S' \times _ S U$ and $i' : U' \to \mathbf{A}^ n_{Y'}$ the base change of $i$. The assumption that $f'$ is Koszul at $x'$ implies that $i'$ is a Koszul-regular immersion in a neighbourhood of $x'$, see Lemma 37.60.3. The scheme $X'$ is flat and locally of finite presentation over $S'$ as a base change of $X$ (see Morphisms, Lemmas 29.25.8 and 29.21.4). Hence $i'$ is a relative $H_1$-regular immersion over $S'$ in a neighbourhood of $x'$ (see Divisors, Definition 31.22.2). Thus the base change $i'_{s'} : U'_{s'} \to \mathbf{A}^ n_{Y'_{s'}}$ is a $H_1$-regular immersion in an open neighbourhood of $x'$, see Divisors, Lemma 31.22.1 and the discussion following Divisors, Definition 31.22.2. Since $s' = \mathop{\mathrm{Spec}}(\kappa (s')) \to \mathop{\mathrm{Spec}}(\kappa (s)) = s$ is a surjective flat universally open morphism (see Morphisms, Lemma 29.23.4) we conclude that the base change $i_ s : U_ s \to \mathbf{A}^ n_{Y_ s}$ is an $H_1$-regular immersion in a neighbourhood of $x$, see Descent, Lemma 35.23.32. Finally, note that $\mathbf{A}^ n_ Y$ is flat and locally of finite presentation over $S$, hence Divisors, Lemma 31.22.7 implies that $i$ is a (Koszul-)regular immersion in a neighbourhood of $x$ as desired. $\square$

Comments (0)

There are also:

  • 4 comment(s) on Section 37.60: Local complete intersection morphisms

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 06B8. Beware of the difference between the letter 'O' and the digit '0'.