Lemma 96.17.1. Let $S$ be a scheme contained in $\mathit{Sch}_{fppf}$. Let $(U, R, s, t, c)$ be a groupoid in algebraic spaces over $S$. Assume $s, t$ are flat and locally of finite presentation. Then the morphism $\mathcal{S}_ U \to [U/R]$ is flat, locally of finite presentation, and surjective.

## 96.17 Applications

Our first task is to show that the quotient stack $[U/R]$ associated to a “flat and locally finitely presented groupoid” is an algebraic stack. See Groupoids in Spaces, Definition 77.20.1 for the definition of the quotient stack. The following lemma is preliminary and is the analogue of Algebraic Stacks, Lemma 93.17.2.

**Proof.**
Let $T$ be a scheme and let $x : (\mathit{Sch}/T)_{fppf} \to [U/R]$ be a $1$-morphism. We have to show that the projection

is surjective, flat, and locally of finite presentation. We already know that the left hand side is representable by an algebraic space $F$, see Algebraic Stacks, Lemmas 93.17.1 and 93.10.11. Hence we have to show the corresponding morphism $F \to T$ of algebraic spaces is surjective, locally of finite presentation, and flat. Since we are working with properties of morphisms of algebraic spaces which are local on the target in the fppf topology we may check this fppf locally on $T$. By construction, there exists an fppf covering $\{ T_ i \to T\} $ of $T$ such that $x|_{(\mathit{Sch}/T_ i)_{fppf}}$ comes from a morphism $x_ i : T_ i \to U$. (Note that $F \times _ T T_ i$ represents the $2$-fibre product $\mathcal{S}_ U \times _{[U/R]} (\mathit{Sch}/T_ i)_{fppf}$ so everything is compatible with the base change via $T_ i \to T$.) Hence we may assume that $x$ comes from $x : T \to U$. In this case we see that

The first equality by Categories, Lemma 4.31.10 and the second equality by Groupoids in Spaces, Lemma 77.22.2. Clearly the last $2$-fibre product is represented by the algebraic space $F = R \times _{s, U, x} T$ and the projection $R \times _{s, U, x} T \to T$ is flat and locally of finite presentation as the base change of the flat locally finitely presented morphism of algebraic spaces $s : R \to U$. It is also surjective as $s$ has a section (namely the identity $e : U \to R$ of the groupoid). This proves the lemma. $\square$

Here is the first main result of this section.

Theorem 96.17.2. Let $S$ be a scheme contained in $\mathit{Sch}_{fppf}$. Let $(U, R, s, t, c)$ be a groupoid in algebraic spaces over $S$. Assume $s, t$ are flat and locally of finite presentation. Then the quotient stack $[U/R]$ is an algebraic stack over $S$.

**Proof.**
We check the two conditions of Theorem 96.16.1 for the morphism

The first is trivial (as $U$ is an algebraic space). The second is Lemma 96.17.1. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)