Lemma 90.3.4. Let $A$ be a local $\Lambda $-algebra with residue field $k$. Let $M$ be an $A$-module. Then $[k : k'] \text{length}_ A(M) = \text{length}_\Lambda (M)$. In the classical case we have $\text{length}_ A(M) = \text{length}_\Lambda (M)$.
Proof. If $M$ is a simple $A$-module then $M \cong k$ as an $A$-module, see Algebra, Lemma 10.52.10. In this case $\text{length}_ A(M) = 1$ and $\text{length}_\Lambda (M) = [k' : k]$, see Algebra, Lemma 10.52.6. If $\text{length}_ A(M)$ is finite, then the result follows on choosing a filtration of $M$ by $A$-submodules with simple quotients using additivity, see Algebra, Lemma 10.52.3. If $\text{length}_ A(M)$ is infinite, the result follows from the obvious inequality $\text{length}_ A(M) \leq \text{length}_\Lambda (M)$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: