Proof.
Note that for $n \geq 2$ we have the equality of relative cotangent spaces
\[ \mathfrak m_ R/(\mathfrak m_\Lambda R + \mathfrak m_ R^2) = \mathfrak m_{R_ n}/(\mathfrak m_\Lambda R_ n + \mathfrak m_{R_ n}^2) \]
and similarly for $S$. Hence by Lemma 90.3.5 we see that $R_ n \to S_ n$ is surjective for all $n$. Now let $K_ n$ be the kernel of $R_ n \to S_ n$. Then the sequences
\[ 0 \to K_ n \to R_ n \to S_ n \to 0 \]
form an exact sequence of directed inverse systems. The system $(K_ n)$ is Mittag-Leffler since each $K_ n$ is Artinian. Hence by Algebra, Lemma 10.86.4 taking limits preserves exactness. So $\mathop{\mathrm{lim}}\nolimits R_ n \to \mathop{\mathrm{lim}}\nolimits S_ n$ is surjective, i.e., $f$ is surjective.
$\square$
Comments (0)