The Stacks project

Remark 90.7.8. Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a morphism of categories cofibered in groupoids over $\mathcal{C}_\Lambda $. Then there is an induced morphism $\widehat{\varphi }: \widehat{\mathcal{F}} \to \widehat{\mathcal{G}}$ of categories cofibered in groupoids over $\widehat{\mathcal{C}}_\Lambda $. It sends an object $\xi = (R, \xi _ n, f_ n)$ of $\widehat{\mathcal{F}}$ to $(R, \varphi (\xi _ n), \varphi (f_ n))$, and it sends a morphism $(a_0 : R \to S, a_ n : \xi _ n \to \eta _ n)$ between objects $\xi $ and $\eta $ of $\widehat{\mathcal{F}}$ to $(a_0 : R \to S, \varphi (a_ n) : \varphi (\xi _ n) \to \varphi (\eta _ n))$. Finally, if $t : \varphi \to \varphi '$ is a $2$-morphism between $1$-morphisms $\varphi , \varphi ': \mathcal{F} \to \mathcal{G}$ of categories cofibred in groupoids, then we obtain a $2$-morphism $\widehat{t} : \widehat{\varphi } \to \widehat{\varphi }'$. Namely, for $\xi = (R, \xi _ n, f_ n)$ as above we set $\widehat{t}_\xi = (t_{\varphi (\xi _ n)})$. Hence completion defines a functor between $2$-categories

\[ \widehat{~ } : \text{Cof}(\mathcal{C}_\Lambda ) \longrightarrow \text{Cof}(\widehat{\mathcal{C}}_\Lambda ) \]

from the $2$-category of categories cofibred in groupoids over $\mathcal{C}_\Lambda $ to the $2$-category of categories cofibred in groupoids over $\widehat{\mathcal{C}}_\Lambda $.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 06H9. Beware of the difference between the letter 'O' and the digit '0'.