The Stacks project

Definition 90.10.1. Let $\mathcal{F}$ be a category cofibered in groupoids over $\mathcal C_\Lambda $. We define conditions (S1) and (S2) on $\mathcal{F}$ as follows:

  1. Every diagram in $\mathcal{F}$

    \[ \vcenter { \xymatrix{ & x_2 \ar[d] \\ x_1 \ar[r] & x } } \quad \text{lying over}\quad \vcenter { \xymatrix{ & A_2 \ar[d] \\ A_1 \ar[r] & A } } \]

    in $\mathcal{C}_\Lambda $ with $A_2 \to A$ surjective can be completed to a commutative diagram

    \[ \vcenter { \xymatrix{ y \ar[r] \ar[d] & x_2 \ar[d] \\ x_1 \ar[r] & x } } \quad \text{lying over}\quad \vcenter { \xymatrix{ A_1 \times _ A A_2 \ar[r] \ar[d] & A_2 \ar[d] \\ A_1 \ar[r] & A. } } \]
  2. The condition of (S1) holds for diagrams in $\mathcal{F}$ lying over a diagram in $\mathcal{C}_\Lambda $ of the form

    \[ \xymatrix{ & k[\epsilon ] \ar[d] \\ A \ar[r] & k. } \]

    Moreover, if we have two commutative diagrams in $\mathcal{F}$

    \[ \vcenter { \xymatrix{ y \ar[r]_ c \ar[d]_ a & x_\epsilon \ar[d]^ e \\ x \ar[r]^ d & x_0 } } \quad \text{and}\quad \vcenter { \xymatrix{ y' \ar[r]_{c'} \ar[d]_{a'} & x_\epsilon \ar[d]^ e \\ x \ar[r]^ d & x_0 } } \quad \text{lying over}\quad \vcenter { \xymatrix{ A \times _ k k[\epsilon ] \ar[r] \ar[d] & k[\epsilon ] \ar[d] \\ A \ar[r] & k } } \]

    then there exists a morphism $b : y \to y'$ in $\mathcal{F}(A \times _ k k[\epsilon ])$ such that $a = a' \circ b$.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 06HW. Beware of the difference between the letter 'O' and the digit '0'.