The Stacks project

Lemma 90.10.7. Let $p: \mathcal{F} \to \mathcal{C}_\Lambda $ be a category cofibered in groupoids. Consider a diagram of $\mathcal{F}$

\[ \vcenter { \xymatrix{ y \ar[r] \ar[d]_ a & x_\epsilon \ar[d]_ e \\ x \ar[r]^ d & x_0 } } \quad \text{lying over}\quad \vcenter { \xymatrix{ A \times _ k k[\epsilon ] \ar[r] \ar[d] & k[\epsilon ] \ar[d] \\ A \ar[r] & k. } } \]

in $\mathcal{C}_\Lambda $. Assume $\mathcal{F}$ satisfies (S2). Then there exists a morphism $s : x \to y$ with $a \circ s = \text{id}_ x$ if and only if there exists a morphism $s_\epsilon : x \to x_\epsilon $ with $e \circ s_\epsilon = d$.

Proof. The “only if” direction is clear. Conversely, assume there exists a morphism $s_\epsilon : x \to x_\epsilon $ with $e \circ s_\epsilon = d$. Note that $p(s_\epsilon ) : A \to k[\epsilon ]$ is a ring map compatible with the map $A \to k$. Hence we obtain

\[ \sigma = (\text{id}_ A, p(s_\epsilon )) : A \to A \times _ k k[\epsilon ]. \]

Choose a pushforward $x \to \sigma _*x$. By construction we can factor $s_\epsilon $ as $x \to \sigma _*x \to x_\epsilon $. Moreover, as $\sigma $ is a section of $A \times _ k k[\epsilon ] \to A$, we get a morphism $\sigma _*x \to x$ such that $x \to \sigma _*x \to x$ is $\text{id}_ x$. Because $e \circ s_\epsilon = d$ we find that the diagram

\[ \xymatrix{ \sigma _*x \ar[r] \ar[d] & x_\epsilon \ar[d]_ e \\ x \ar[r]^ d & x_0 } \]

is commutative. Hence by (S2) we obtain a morphism $\sigma _*x \to y$ such that $\sigma _*x \to y \to x$ is the given map $\sigma _*x \to x$. The solution to the problem is now to take $a : x \to y$ equal to the composition $x \to \sigma _*x \to y$. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 06IS. Beware of the difference between the letter 'O' and the digit '0'.