The Stacks project

Lemma 90.16.7. Let $\mathcal{F}$ be a category cofibered in groupoids over $\mathcal{C}_\Lambda $ satisfying (RS). The following conditions are equivalent:

  1. $\overline{\mathcal{F}}$ satisfies (RS).

  2. Let $f_1: A_1 \to A$ and $f_2: A_2 \to A$ be ring maps in $\mathcal{C}_\Lambda $ with $f_2$ surjective. The induced map of sets of isomorphism classes

    \[ \overline{\mathcal{F}(A_1) \times _{\mathcal{F}(A)} \mathcal{F}(A_2)} \to \overline{\mathcal{F}}(A_1) \times _{\overline{\mathcal{F}}(A)} \overline{\mathcal{F}}(A_2) \]

    is injective.

  3. For every morphism $x' \to x$ in $\mathcal{F}$ lying over a surjective ring map $A' \to A$, the map $\text{Aut}_{A'}(x') \to \text{Aut}_ A(x)$ is surjective.

  4. For every morphism $x' \to x$ in $\mathcal{F}$ lying over a small extension $A' \to A$, the map $\text{Aut}_{A'}(x') \to \text{Aut}_ A(x)$ is surjective.

Proof. We prove that (1) is equivalent to (2) and (2) is equivalent to (3). The equivalence of (3) and (4) follows from Lemma 90.3.3.

Let $f_1: A_1 \to A$ and $f_2: A_2 \to A$ be ring maps in $\mathcal{C}_\Lambda $ with $f_2$ surjective. By Remark 90.16.5 we see $\overline{\mathcal{F}}$ satisfies (RS) if and only if the map

\[ \overline{\mathcal{F}}(A_1 \times _ A A_2) \to \overline{\mathcal F}(A_1) \times _{\overline{\mathcal{F}}(A)} \overline{\mathcal{F}}(A_2) \]

is bijective for any such $f_1, f_2$. This map is at least surjective since that is the condition of (S1) and $\overline{\mathcal{F}}$ satisfies (S1) by Lemmas 90.16.6 and 90.10.5. Moreover, this map factors as

\[ \overline{\mathcal{F}}(A_1 \times _ A A_2) \longrightarrow \overline{\mathcal{F}(A_1) \times _{\mathcal{F}(A)} \mathcal{F}(A_2)} \longrightarrow \overline{\mathcal{F}}(A_1) \times _{\overline{\mathcal{F}}(A)} \overline{\mathcal{F}}(A_2), \]

where the first map is a bijection since

\[ \mathcal{F}(A_1 \times _ A A_2) \longrightarrow \mathcal{F}(A_1) \times _{\mathcal{F}(A)} \mathcal{F}(A_2) \]

is an equivalence by (RS) for $\mathcal{F}$. Hence (1) is equivalent to (2).

Assume (2) holds. Let $x' \to x$ be a morphism in $\mathcal{F}$ lying over a surjective ring map $f: A' \to A$. Let $a \in \text{Aut}_ A(x)$. The objects

\[ (x', x', a : x \to x), \ (x', x', \text{id} : x \to x) \]

of $\mathcal{F}(A') \times _{\mathcal{F}(A)} \mathcal{F}(A')$ have the same image in $\overline{\mathcal{F}}(A') \times _{\overline{\mathcal{F}}(A)} \overline{\mathcal{F}}(A')$. By (2) there exists maps $b_1, b_2 : x' \to x'$ such that

\[ \xymatrix{ x \ar[r]_ a \ar[d]_{f_*b_1} & x \ar[d]^{f_*b_2} \\ x \ar[r]^{\text{id}} & x } \]

commutes. Hence $b_2^{-1} \circ b_1 \in \text{Aut}_{A'}(x')$ has image $a \in \text{Aut}_ A(x)$. Hence (3) holds.

Assume (3) holds. Suppose

\[ (x_1, x_2, a : (f_1)_*x_1 \to (f_2)_*x_2), \ (x'_1, x'_2, a' : (f_1)_*x'_1 \to (f_2)_*x'_2) \]

are objects of $\mathcal{F}(A_1) \times _{\mathcal{F}(A)} \mathcal{F}(A_2)$ with the same image in $\overline{\mathcal{F}}(A_1) \times _{\overline{\mathcal{F}}(A)} \overline{\mathcal{F}}(A_2)$. Then there are morphisms $b_1: x_1 \to x'_1$ in $\mathcal{F}(A_1)$ and $b_2: x_2 \to x'_2$ in $\mathcal F(A_2)$. By (3) we can modify $b_2$ by an automorphism of $x_2$ over $A_2$ so that the diagram

\[ \xymatrix{ (f_1)_*x_1 \ar[r]_ a \ar[d]_{(f_1)_*b_1} & (f_2)_*x_2 \ar[d]^{(f_2)_*b_2} \\ (f_1)_*x'_1 \ar[r]^{a'} & (f_2)_*x'_2. } \]

commutes. This proves $(x_1, x_2, a) \cong (x'_1, x'_2, a')$ in $\overline{\mathcal{F}(A_1) \times _{\mathcal{F}(A)} \mathcal{F}(A_2)}$. Hence (2) holds. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 06J8. Beware of the difference between the letter 'O' and the digit '0'.