The Stacks project

Remark 89.19.8. We point out some basic relationships between infinitesimal automorphism groups, liftings, and tangent spaces to automorphism functors. Let $\mathcal{F}$ be a category cofibered in groupoids over $\mathcal{C}_\Lambda $. Let $x' \to x$ be a morphism lying over a ring map $A' \to A$. Then from the definitions we have an equality

\[ \text{Inf}(x'/x) = \text{Lift}(\text{id}_ x, A') \]

where the liftings are of $\text{id}_ x$ as an object of $\mathit{Aut}(x')$. If $x_0 \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{F}(k))$ and $x'_0$ is the pushforward to $\mathcal{F}(k[\epsilon ])$, then applying this to $x'_0 \to x_0$ we get

\[ \text{Inf}_{x_0}(\mathcal{F}) = \text{Lift}(\text{id}_{x_0}, k[\epsilon ]) = T_{\text{id}_{x_0}} \mathit{Aut}(x_0), \]

the last equality following directly from the definitions.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 06JW. Beware of the difference between the letter 'O' and the digit '0'.