Remark 90.21.5. Hence a representable groupoid in functors on $\mathcal{C}$ is given by objects $U$ and $R$ of $\mathcal{C}$ and morphisms $s, t : U \to R$ and $c : R \to R \amalg _{s, U, t} R$ such that $(\underline{U}, \underline{R}, s, t, c)$ satisfies the condition of Definition 90.21.1. The reason for requiring the existence of the pushout $R \amalg _{s, U, t} R$ is so that the composition morphism $c$ is defined at the level of morphisms in $\mathcal{C}$. This requirement will always be satisfied below when we consider representable groupoids in functors on $\widehat{\mathcal{C}}_\Lambda $, since by Lemma 90.4.3 the category $\widehat{\mathcal{C}}_\Lambda $ admits pushouts.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)