Remark 90.22.3. Let $(U, R, s, t, c)$ be a groupoid in functors on $\mathcal{C}_\Lambda $. Then there is a canonical isomorphism $(U, R, s, t, c)^{\wedge }|_{\mathcal{C}_\Lambda } \cong (U, R, s, t, c)$, see Remark 90.7.7. On the other hand, let $(U, R, s, t, c)$ be a groupoid in functors on $\widehat{\mathcal{C}}_\Lambda $ such that $U, R : \widehat{\mathcal{C}}_\Lambda \to \textit{Sets}$ both commute with limits, e.g. if $U, R$ are representable. Then there is a canonical isomorphism $((U, R, s, t, c)|_{\mathcal{C}_\Lambda })^{\wedge } \cong (U, R, s, t, c)$. This follows from Remark 90.7.11.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)