The Stacks project

Lemma 90.24.1. Let $(U, R, s, t, c)$ be a smooth groupoid in functors on $\mathcal{C}_\Lambda $. Assume $U$ and $R$ satisfy (RS). Then $[U/R]$ satisfies (RS).

Proof. Let

\[ \xymatrix{ & (A_2, x_2) \ar[d]^{(f_2, a_2)} \\ (A_1, x_1) \ar[r]^{(f_1, a_1)} & (A, x) } \]

be a diagram in $[U/R]$ such that $f_2: A_2 \to A$ is surjective. The notation is as in Remarks 90.5.2 (9). Hence $f_1: A_1 \to A, f_2: A_2 \to A$ are maps in $\mathcal{C}_\Lambda $, $x \in U(A)$, $x_1 \in U(A_1)$, $x_2 \in U(A_2)$, and $a_1, a_2 \in R(A)$ with $s(a_1) = U(f_1)(x_1)$, $t(a_1) = x$ and $s(a_2) = U(f_2)(x_2)$, $t(a_2) = x$. We construct a fiber product lying over $A_1 \times _ A A_2$ for this diagram in $[U/R]$ as follows.

Let $a = c(i(a_1), a_2)$, where $i: R \to R$ is the inverse morphism. Then $a \in R(A)$, $x_2 \in U(A_2)$ and $s(a) = U(f_2)(x_2)$. Hence an element $(a, x_2) \in R(A) \times _{s, U(A), U(f_2)} U(A_2)$. By smoothness of $s : R \to U$ there is an element $\widetilde{a} \in R(A_2)$ with $R(f_2)(\widetilde{a}) = a$ and $s(\widetilde{a}) = x_2$. In particular $U(f_2)(t(\widetilde{a})) = t(a) = U(f_1)(x_1)$. Thus $x_1$ and $t(\widetilde{a})$ define an element

\[ (x_1, t(\widetilde{a})) \in U(A_1) \times _{U(A)} U(A_2). \]

By the assumption that $U$ satisfies (RS), we have an identification $U(A_1) \times _{U(A)} U(A_2) = U(A_1 \times _ A A_2)$. Let us denote $x_1 \times t(\widetilde{a}) \in U(A_1 \times _ A A_2)$ the element corresponding to $(x_1, t(\widetilde{a})) \in U(A_1) \times _{U(A)} U(A_2)$. Let $p_1, p_2$ be the projections of $A_1 \times _ A A_2$. We claim

\[ \xymatrix{ (A_1 \times _ A A_2, x_1 \times t(\widetilde{a})) \ar[d]_{(p_1, e(x_1))} \ar[rr]_-{(p_2, i(\widetilde{a}))} & & (A_2, x_2) \ar[d]^{(f_2, a_2)} \\ (A_1, x_1) \ar[rr]^{(f_1, a_1)} & & (A, x) } \]

is a fiber square in $[U/R]$. (Note $e: U \to R$ denotes the identity.)

The diagram is commutative because $c(a_2, R(f_2)(i(\widetilde{a}))) = c(a_2, i(a)) = a_1$. To check it is a fiber square, let

\[ \xymatrix{ (B, z) \ar[d]_{(g_1, b_1)} \ar[rr]_{(g_2, b_2)} & & (A_2, x_2) \ar[d]^{(f_2, a_2)} \\ (A_1, x_1) \ar[rr]^{(f_1, a_1)} & & (A, x) } \]

be a commutative diagram in $[U/R]$. We will show there is a unique morphism $(g, b) : (B, z) \to (A_1 \times _ A A_2, x_1 \times t(\widetilde{a}))$ compatible with the morphisms to $(A_1, x_1)$ and $(A_2, x_2)$. We must take $g = (g_1, g_2) : B \to A_1 \times _ A A_2$. Since by assumption $R$ satisfies (RS), we have an identification $R(A_1 \times _ A A_2) = R(A_1) \times _{R(A)} R(A_2)$. Hence we can write $b = (b'_1, b'_2)$ for some $b'_1 \in R(A_1)$, $b'_2 \in R(A_2)$ which agree in $R(A)$. Then $((g_1, g_2), (b'_1, b'_2)) : (B, z) \to (A_1 \times _ A A_2, x_1 \times t(\widetilde{a}))$ will commute with the projections if and only if $b'_1 = b_1$ and $b'_2 = c(\widetilde{a}, b_2)$ proving unicity and existence. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 06KT. Beware of the difference between the letter 'O' and the digit '0'.