Lemma 90.24.1. Let $(U, R, s, t, c)$ be a smooth groupoid in functors on $\mathcal{C}_\Lambda $. Assume $U$ and $R$ satisfy (RS). Then $[U/R]$ satisfies (RS).
Proof. Let
be a diagram in $[U/R]$ such that $f_2: A_2 \to A$ is surjective. The notation is as in Remarks 90.5.2 (9). Hence $f_1: A_1 \to A, f_2: A_2 \to A$ are maps in $\mathcal{C}_\Lambda $, $x \in U(A)$, $x_1 \in U(A_1)$, $x_2 \in U(A_2)$, and $a_1, a_2 \in R(A)$ with $s(a_1) = U(f_1)(x_1)$, $t(a_1) = x$ and $s(a_2) = U(f_2)(x_2)$, $t(a_2) = x$. We construct a fiber product lying over $A_1 \times _ A A_2$ for this diagram in $[U/R]$ as follows.
Let $a = c(i(a_1), a_2)$, where $i: R \to R$ is the inverse morphism. Then $a \in R(A)$, $x_2 \in U(A_2)$ and $s(a) = U(f_2)(x_2)$. Hence an element $(a, x_2) \in R(A) \times _{s, U(A), U(f_2)} U(A_2)$. By smoothness of $s : R \to U$ there is an element $\widetilde{a} \in R(A_2)$ with $R(f_2)(\widetilde{a}) = a$ and $s(\widetilde{a}) = x_2$. In particular $U(f_2)(t(\widetilde{a})) = t(a) = U(f_1)(x_1)$. Thus $x_1$ and $t(\widetilde{a})$ define an element
By the assumption that $U$ satisfies (RS), we have an identification $U(A_1) \times _{U(A)} U(A_2) = U(A_1 \times _ A A_2)$. Let us denote $x_1 \times t(\widetilde{a}) \in U(A_1 \times _ A A_2)$ the element corresponding to $(x_1, t(\widetilde{a})) \in U(A_1) \times _{U(A)} U(A_2)$. Let $p_1, p_2$ be the projections of $A_1 \times _ A A_2$. We claim
is a fiber square in $[U/R]$. (Note $e: U \to R$ denotes the identity.)
The diagram is commutative because $c(a_2, R(f_2)(i(\widetilde{a}))) = c(a_2, i(a)) = a_1$. To check it is a fiber square, let
be a commutative diagram in $[U/R]$. We will show there is a unique morphism $(g, b) : (B, z) \to (A_1 \times _ A A_2, x_1 \times t(\widetilde{a}))$ compatible with the morphisms to $(A_1, x_1)$ and $(A_2, x_2)$. We must take $g = (g_1, g_2) : B \to A_1 \times _ A A_2$. Since by assumption $R$ satisfies (RS), we have an identification $R(A_1 \times _ A A_2) = R(A_1) \times _{R(A)} R(A_2)$. Hence we can write $b = (b'_1, b'_2)$ for some $b'_1 \in R(A_1)$, $b'_2 \in R(A_2)$ which agree in $R(A)$. Then $((g_1, g_2), (b'_1, b'_2)) : (B, z) \to (A_1 \times _ A A_2, x_1 \times t(\widetilde{a}))$ will commute with the projections if and only if $b'_1 = b_1$ and $b'_2 = c(\widetilde{a}, b_2)$ proving unicity and existence. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)