The Stacks project

Lemma 90.16.12. Let

\[ \xymatrix{ \mathcal{H} \times _\mathcal {F} \mathcal{G} \ar[r] \ar[d] & \mathcal{G} \ar[d]^ g \\ \mathcal{H} \ar[r]^ f & \mathcal{F} } \]

be $2$-fibre product of categories cofibered in groupoids over $\mathcal{C}_\Lambda $. If $\mathcal{F}, \mathcal{G}, \mathcal{H}$ all satisfy (RS), then $\mathcal{H} \times _\mathcal {F} \mathcal{G}$ satisfies (RS).

Proof. If $A$ is an object of $\mathcal{C}_\Lambda $, then an object of the fiber category of $\mathcal{H} \times _\mathcal {F} \mathcal{G}$ over $A$ is a triple $(u, v, a)$ where $u \in \mathcal{H}(A)$, $v \in \mathcal{G}(A)$, and $a : f(u) \to g(v)$ is a morphism in $\mathcal{F}(A)$. Consider a diagram in $\mathcal{H} \times _\mathcal {F} \mathcal{G}$

\[ \vcenter { \xymatrix{ & (u_2, v_2, a_2) \ar[d] \\ (u_1, v_1, a_1) \ar[r] & (u, v, a) } } \quad \text{lying over}\quad \vcenter { \xymatrix{ & A_2 \ar[d] \\ A_1 \ar[r] & A } } \]

in $\mathcal{C}_\Lambda $ with $A_2 \to A$ surjective. Since $\mathcal{H}$ and $\mathcal{G}$ satisfy (RS), there are fiber products $u_1 \times _ u u_2$ and $v_1 \times _ v v_2$ lying over $A_1 \times _ A A_2$. Since $\mathcal{F}$ satisfies (RS), Lemma 90.16.2 shows

\[ \vcenter { \xymatrix{ f(u_1 \times _ u u_2) \ar[r] \ar[d] & f(u_2) \ar[d] \\ f(u_1) \ar[r] & f(u) } } \quad \text{and}\quad \vcenter { \xymatrix{ g(v_1 \times _ v v_2) \ar[r] \ar[d] & g(v_2) \ar[d] \\ g(v_1) \ar[r] & g(v) } } \]

are both fiber squares in $\mathcal{F}$. Thus we can view $a_1 \times _ a a_2$ as a morphism from $f(u_1 \times _ u u_2)$ to $g(v_1 \times _ v v_2)$ over $A_1 \times _ A A_2$. It follows that

\[ \xymatrix{ (u_1 \times _ u u_2, v_1 \times _ v v_2, a_{1} \times _ a a_2) \ar[d] \ar[r] & (u_2, v_2, a_2) \ar[d] \\ (u_1, v_1, a_1) \ar[r] & (u, v, a) } \]

is a fiber square in $\mathcal{H} \times _\mathcal {F} \mathcal{G}$ as desired. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 06L4. Beware of the difference between the letter 'O' and the digit '0'.