The Stacks project

98.5 The Rim-Schlessinger condition

The motivation for the following definition comes from Lemma 98.4.1 and Formal Deformation Theory, Definition 90.16.1 and Lemma 90.16.4.

Definition 98.5.1. Let $S$ be a locally Noetherian scheme. Let $\mathcal{Z}$ be a category fibred in groupoids over $(\mathit{Sch}/S)_{fppf}$. We say $\mathcal{Z}$ satisfies condition (RS) if for every pushout

\[ \xymatrix{ X \ar[r] \ar[d] & X' \ar[d] \\ Y \ar[r] & Y' = Y \amalg _ X X' } \]

in the category of schemes over $S$ where

  1. $X$, $X'$, $Y$, $Y'$ are spectra of local Artinian rings,

  2. $X$, $X'$, $Y$, $Y'$ are of finite type over $S$, and

  3. $X \to X'$ (and hence $Y \to Y'$) is a closed immersion

the functor of fibre categories

\[ \mathcal{Z}_{Y'} \longrightarrow \mathcal{Z}_ Y \times _{\mathcal{Z}_ X} \mathcal{Z}_{X'} \]

is an equivalence of categories.

If $A$ is an Artinian local ring with residue field $k$, then any morphism $\mathop{\mathrm{Spec}}(A) \to S$ is affine and of finite type if and only if the induced morphism $\mathop{\mathrm{Spec}}(k) \to S$ is of finite type, see Morphisms, Lemmas 29.11.13 and 29.16.2.

Lemma 98.5.2. Let $\mathcal{X}$ be an algebraic stack over a locally Noetherian base $S$. Then $\mathcal{X}$ satisfies (RS).

Proof. Immediate from the definitions and Lemma 98.4.1. $\square$

Lemma 98.5.3. Let $S$ be a scheme. Let $p : \mathcal{X} \to \mathcal{Y}$ and $q : \mathcal{Z} \to \mathcal{Y}$ be $1$-morphisms of categories fibred in groupoids over $(\mathit{Sch}/S)_{fppf}$. If $\mathcal{X}$, $\mathcal{Y}$, and $\mathcal{Z}$ satisfy (RS), then so does $\mathcal{X} \times _\mathcal {Y} \mathcal{Z}$.

Proof. This is formal. Let

\[ \xymatrix{ X \ar[r] \ar[d] & X' \ar[d] \\ Y \ar[r] & Y' = Y \amalg _ X X' } \]

be a diagram as in Definition 98.5.1. We have to show that

\[ (\mathcal{X} \times _{\mathcal{Y}} \mathcal{Z})_{Y'} \longrightarrow (\mathcal{X} \times _{\mathcal{Y}} \mathcal{Z})_ Y \times _{(\mathcal{X} \times _{\mathcal{Y}} \mathcal{Z})_ X} (\mathcal{X} \times _{\mathcal{Y}} \mathcal{Z})_{X'} \]

is an equivalence. Using the definition of the $2$-fibre product this becomes

98.5.3.1
\begin{equation} \label{artin-equation-RS-fibre-product} \mathcal{X}_{Y'} \times _{\mathcal{Y}_{Y'}} \mathcal{Z}_{Y'} \longrightarrow (\mathcal{X}_ Y \times _{\mathcal{Y}_ Y} \mathcal{Z}_ Y) \times _{(\mathcal{X}_ X \times _{\mathcal{Y}_ X} \mathcal{Z}_ X)} (\mathcal{X}_{X'} \times _{\mathcal{Y}_{X'}} \mathcal{Z}_{X'}). \end{equation}

We are given that each of the functors

\[ \mathcal{X}_{Y'} \to \mathcal{X}_ Y \times _{\mathcal{Y}_ Y} \mathcal{Z}_ Y, \quad \mathcal{Y}_{Y'} \to \mathcal{X}_ X \times _{\mathcal{Y}_ X} \mathcal{Z}_ X, \quad \mathcal{Z}_{Y'} \to \mathcal{X}_{X'} \times _{\mathcal{Y}_{X'}} \mathcal{Z}_{X'} \]

are equivalences. An object of the right hand side of (98.5.3.1) is a system

\[ ((x_ Y, z_ Y, \phi _ Y), (x_{X'}, z_{X'}, \phi _{X'}), (\alpha , \beta )). \]

Then $(x_ Y, x_{Y'}, \alpha )$ is isomorphic to the image of an object $x_{Y'}$ in $\mathcal{X}_{Y'}$ and $(z_ Y, z_{Y'}, \beta )$ is isomorphic to the image of an object $z_{Y'}$ of $\mathcal{Z}_{Y'}$. The pair of morphisms $(\phi _ Y, \phi _{X'})$ corresponds to a morphism $\psi $ between the images of $x_{Y'}$ and $z_{Y'}$ in $\mathcal{Y}_{Y'}$. Then $(x_{Y'}, z_{Y'}, \psi )$ is an object of the left hand side of (98.5.3.1) mapping to the given object of the right hand side. This proves that (98.5.3.1) is essentially surjective. We omit the proof that it is fully faithful. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 06L9. Beware of the difference between the letter 'O' and the digit '0'.