Lemma 98.6.1. Let S be a locally Noetherian scheme. Let \mathcal{X} be a category fibred in groupoids over (\mathit{Sch}/S)_{fppf} satisfying (RS). For any field k of finite type over S and any object x_0 of \mathcal{X} lying over k the predeformation category p : \mathcal{F}_{\mathcal{X}, k, x_0} \to \mathcal{C}_\Lambda (98.3.0.2) is a deformation category, see Formal Deformation Theory, Definition 90.16.8.
98.6 Deformation categories
We match the notation introduced above with the notation from the chapter “Formal Deformation Theory”.
Proof. Set \mathcal{F} = \mathcal{F}_{\mathcal{X}, k, x_0}. Let f_1 : A_1 \to A and f_2 : A_2 \to A be ring maps in \mathcal{C}_\Lambda with f_2 surjective. We have to show that the functor
is an equivalence, see Formal Deformation Theory, Lemma 90.16.4. Set X = \mathop{\mathrm{Spec}}(A), X' = \mathop{\mathrm{Spec}}(A_2), Y = \mathop{\mathrm{Spec}}(A_1) and Y' = \mathop{\mathrm{Spec}}(A_1 \times _ A A_2). Note that Y' = Y \amalg _ X X' in the category of schemes, see More on Morphisms, Lemma 37.14.3. We know that in the diagram of functors of fibre categories
the top horizontal arrow is an equivalence by Definition 98.5.1. Since \mathcal{F}(B) is the category of objects of \mathcal{X}_{\mathop{\mathrm{Spec}}(B)} with an identification with x_0 over k we win. \square
Remark 98.6.2. Let S be a locally Noetherian scheme. Let \mathcal{X} be fibred in groupoids over (\mathit{Sch}/S)_{fppf}. Let k be a field of finite type over S and x_0 an object of \mathcal{X} over k. Let p : \mathcal{F} \to \mathcal{C}_\Lambda be as in (98.3.0.2). If \mathcal{F} is a deformation category, i.e., if \mathcal{F} satisfies the Rim-Schlessinger condition (RS), then we see that \mathcal{F} satisfies Schlessinger's conditions (S1) and (S2) by Formal Deformation Theory, Lemma 90.16.6. Let \overline{\mathcal{F}} be the functor of isomorphism classes, see Formal Deformation Theory, Remarks 90.5.2 (10). Then \overline{\mathcal{F}} satisfies (S1) and (S2) as well, see Formal Deformation Theory, Lemma 90.10.5. This holds in particular in the situation of Lemma 98.6.1.
Comments (0)