Processing math: 100%

The Stacks project

98.6 Deformation categories

We match the notation introduced above with the notation from the chapter “Formal Deformation Theory”.

Lemma 98.6.1. Let S be a locally Noetherian scheme. Let \mathcal{X} be a category fibred in groupoids over (\mathit{Sch}/S)_{fppf} satisfying (RS). For any field k of finite type over S and any object x_0 of \mathcal{X} lying over k the predeformation category p : \mathcal{F}_{\mathcal{X}, k, x_0} \to \mathcal{C}_\Lambda (98.3.0.2) is a deformation category, see Formal Deformation Theory, Definition 90.16.8.

Proof. Set \mathcal{F} = \mathcal{F}_{\mathcal{X}, k, x_0}. Let f_1 : A_1 \to A and f_2 : A_2 \to A be ring maps in \mathcal{C}_\Lambda with f_2 surjective. We have to show that the functor

\mathcal{F}(A_1 \times _ A A_2) \longrightarrow \mathcal{F}(A_1) \times _{\mathcal{F}(A)} \mathcal{F}(A_2)

is an equivalence, see Formal Deformation Theory, Lemma 90.16.4. Set X = \mathop{\mathrm{Spec}}(A), X' = \mathop{\mathrm{Spec}}(A_2), Y = \mathop{\mathrm{Spec}}(A_1) and Y' = \mathop{\mathrm{Spec}}(A_1 \times _ A A_2). Note that Y' = Y \amalg _ X X' in the category of schemes, see More on Morphisms, Lemma 37.14.3. We know that in the diagram of functors of fibre categories

\xymatrix{ \mathcal{X}_{Y'} \ar[r] \ar[d] & \mathcal{X}_ Y \times _{\mathcal{X}_ X} \mathcal{X}_{X'} \ar[d] \\ \mathcal{X}_{\mathop{\mathrm{Spec}}(k)} \ar@{=}[r] & \mathcal{X}_{\mathop{\mathrm{Spec}}(k)} }

the top horizontal arrow is an equivalence by Definition 98.5.1. Since \mathcal{F}(B) is the category of objects of \mathcal{X}_{\mathop{\mathrm{Spec}}(B)} with an identification with x_0 over k we win. \square

Remark 98.6.2. Let S be a locally Noetherian scheme. Let \mathcal{X} be fibred in groupoids over (\mathit{Sch}/S)_{fppf}. Let k be a field of finite type over S and x_0 an object of \mathcal{X} over k. Let p : \mathcal{F} \to \mathcal{C}_\Lambda be as in (98.3.0.2). If \mathcal{F} is a deformation category, i.e., if \mathcal{F} satisfies the Rim-Schlessinger condition (RS), then we see that \mathcal{F} satisfies Schlessinger's conditions (S1) and (S2) by Formal Deformation Theory, Lemma 90.16.6. Let \overline{\mathcal{F}} be the functor of isomorphism classes, see Formal Deformation Theory, Remarks 90.5.2 (10). Then \overline{\mathcal{F}} satisfies (S1) and (S2) as well, see Formal Deformation Theory, Lemma 90.10.5. This holds in particular in the situation of Lemma 98.6.1.


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.