## 97.6 Deformation categories

We match the notation introduced above with the notation from the chapter “Formal Deformation Theory”.

Lemma 97.6.1. Let $S$ be a locally Noetherian scheme. Let $\mathcal{X}$ be a category fibred in groupoids over $(\mathit{Sch}/S)_{fppf}$ satisfying (RS). For any field $k$ of finite type over $S$ and any object $x_0$ of $\mathcal{X}$ lying over $k$ the predeformation category $p : \mathcal{F}_{\mathcal{X}, k, x_0} \to \mathcal{C}_\Lambda$ (97.3.0.2) is a deformation category, see Formal Deformation Theory, Definition 89.16.8.

Proof. Set $\mathcal{F} = \mathcal{F}_{\mathcal{X}, k, x_0}$. Let $f_1 : A_1 \to A$ and $f_2 : A_2 \to A$ be ring maps in $\mathcal{C}_\Lambda$ with $f_2$ surjective. We have to show that the functor

$\mathcal{F}(A_1 \times _ A A_2) \longrightarrow \mathcal{F}(A_1) \times _{\mathcal{F}(A)} \mathcal{F}(A_2)$

is an equivalence, see Formal Deformation Theory, Lemma 89.16.4. Set $X = \mathop{\mathrm{Spec}}(A)$, $X' = \mathop{\mathrm{Spec}}(A_2)$, $Y = \mathop{\mathrm{Spec}}(A_1)$ and $Y' = \mathop{\mathrm{Spec}}(A_1 \times _ A A_2)$. Note that $Y' = Y \amalg _ X X'$ in the category of schemes, see More on Morphisms, Lemma 37.14.3. We know that in the diagram of functors of fibre categories

$\xymatrix{ \mathcal{X}_{Y'} \ar[r] \ar[d] & \mathcal{X}_ Y \times _{\mathcal{X}_ X} \mathcal{X}_{X'} \ar[d] \\ \mathcal{X}_{\mathop{\mathrm{Spec}}(k)} \ar@{=}[r] & \mathcal{X}_{\mathop{\mathrm{Spec}}(k)} }$

the top horizontal arrow is an equivalence by Definition 97.5.1. Since $\mathcal{F}(B)$ is the category of objects of $\mathcal{X}_{\mathop{\mathrm{Spec}}(B)}$ with an identification with $x_0$ over $k$ we win. $\square$

Remark 97.6.2. Let $S$ be a locally Noetherian scheme. Let $\mathcal{X}$ be fibred in groupoids over $(\mathit{Sch}/S)_{fppf}$. Let $k$ be a field of finite type over $S$ and $x_0$ an object of $\mathcal{X}$ over $k$. Let $p : \mathcal{F} \to \mathcal{C}_\Lambda$ be as in (97.3.0.2). If $\mathcal{F}$ is a deformation category, i.e., if $\mathcal{F}$ satisfies the Rim-Schlessinger condition (RS), then we see that $\mathcal{F}$ satisfies Schlessinger's conditions (S1) and (S2) by Formal Deformation Theory, Lemma 89.16.6. Let $\overline{\mathcal{F}}$ be the functor of isomorphism classes, see Formal Deformation Theory, Remarks 89.5.2 (10). Then $\overline{\mathcal{F}}$ satisfies (S1) and (S2) as well, see Formal Deformation Theory, Lemma 89.10.5. This holds in particular in the situation of Lemma 97.6.1.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).