Lemma 98.6.1. Let $S$ be a locally Noetherian scheme. Let $\mathcal{X}$ be a category fibred in groupoids over $(\mathit{Sch}/S)_{fppf}$ satisfying (RS). For any field $k$ of finite type over $S$ and any object $x_0$ of $\mathcal{X}$ lying over $k$ the predeformation category $p : \mathcal{F}_{\mathcal{X}, k, x_0} \to \mathcal{C}_\Lambda$ (98.3.0.2) is a deformation category, see Formal Deformation Theory, Definition 90.16.8.

Proof. Set $\mathcal{F} = \mathcal{F}_{\mathcal{X}, k, x_0}$. Let $f_1 : A_1 \to A$ and $f_2 : A_2 \to A$ be ring maps in $\mathcal{C}_\Lambda$ with $f_2$ surjective. We have to show that the functor

$\mathcal{F}(A_1 \times _ A A_2) \longrightarrow \mathcal{F}(A_1) \times _{\mathcal{F}(A)} \mathcal{F}(A_2)$

is an equivalence, see Formal Deformation Theory, Lemma 90.16.4. Set $X = \mathop{\mathrm{Spec}}(A)$, $X' = \mathop{\mathrm{Spec}}(A_2)$, $Y = \mathop{\mathrm{Spec}}(A_1)$ and $Y' = \mathop{\mathrm{Spec}}(A_1 \times _ A A_2)$. Note that $Y' = Y \amalg _ X X'$ in the category of schemes, see More on Morphisms, Lemma 37.14.3. We know that in the diagram of functors of fibre categories

$\xymatrix{ \mathcal{X}_{Y'} \ar[r] \ar[d] & \mathcal{X}_ Y \times _{\mathcal{X}_ X} \mathcal{X}_{X'} \ar[d] \\ \mathcal{X}_{\mathop{\mathrm{Spec}}(k)} \ar@{=}[r] & \mathcal{X}_{\mathop{\mathrm{Spec}}(k)} }$

the top horizontal arrow is an equivalence by Definition 98.5.1. Since $\mathcal{F}(B)$ is the category of objects of $\mathcal{X}_{\mathop{\mathrm{Spec}}(B)}$ with an identification with $x_0$ over $k$ we win. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).