Let $\mathcal{F}$ be cofibered in groupoids over $\mathcal{C}$. For $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$ set $\overline{\mathcal{F}}(U)$ equal to the set of isomorphisms classes of the category $\mathcal{F}(U)$. If $f : U \to V$ is a morphism of $\mathcal{C}$, then we obtain a map of sets $\overline{\mathcal{F}}(U) \to \overline{\mathcal{F}}(V)$ by mapping the isomorphism class of $x$ to the isomorphism class of a pushforward $f_*x$ of $x$ see (4). Then $\overline{\mathcal{F}} : \mathcal{C} \to \textit{Sets}$ is a functor. Similarly, if $\varphi : \mathcal{F} \to \mathcal{G}$ is a morphism of cofibered categories, we denote by $\overline{\varphi }: \overline{\mathcal{F}} \to \overline{\mathcal{G}}$ the associated morphism of functors.

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)