Loading [MathJax]/extensions/tex2jax.js

The Stacks project

Lemma 78.26.2. Assume $B \to S$ and $(U, R, s, t, c)$ as in Definition 78.20.1 (1). Let $G/U$ be the stabilizer group algebraic space of the groupoid $(U, R, s, t, c, e, i)$, see Definition 78.16.2. There is a canonical $2$-cartesian diagram

\[ \xymatrix{ \mathcal{S}_ G \ar[r] \ar[d] & \mathcal{S}_ U \ar[d] \\ \mathcal{I}_{[U/R]} \ar[r] & [U/R] } \]

of stacks in groupoids of $(\mathit{Sch}/S)_{fppf}$.

Proof. By Lemma 78.25.3 it suffices to prove that the morphism $s' : R' \to G$ of Lemma 78.26.1 isomorphic to the base change of $s$ by the structure morphism $G \to U$. This base change property is clear from the construction of $s'$. $\square$


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.