Lemma 76.26.2. Let $S$ be a scheme. Let $B$ be an algebraic space over $S$. Let $G$ be a group algebraic space over $B$. Endow $B$ with the trivial action of $G$. The morphism

(Lemma 76.19.2) turns $[B/G]$ into a gerbe over $B$.

Lemma 76.26.2. Let $S$ be a scheme. Let $B$ be an algebraic space over $S$. Let $G$ be a group algebraic space over $B$. Endow $B$ with the trivial action of $G$. The morphism

\[ [B/G] \longrightarrow \mathcal{S}_ B \]

(Lemma 76.19.2) turns $[B/G]$ into a gerbe over $B$.

**Proof.**
Immediate from Lemma 76.26.1 as the morphisms $B \to B$ and $B \times _ B G \to B$ are surjective as morphisms of sheaves.
$\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: