Lemma 101.28.4. Let \mathcal{X} \to \mathcal{Y} and \mathcal{Y} \to \mathcal{Z} be morphisms of algebraic stacks. If \mathcal{X} is a gerbe over \mathcal{Y} and \mathcal{Y} is a gerbe over \mathcal{Z}, then \mathcal{X} is a gerbe over \mathcal{Z}.
Proof. Immediate from Stacks, Lemma 8.11.6. \square
Comments (0)
There are also: