Lemma 101.28.5. Let
\xymatrix{ \mathcal{X}' \ar[r] \ar[d] & \mathcal{X} \ar[d] \\ \mathcal{Y}' \ar[r] & \mathcal{Y} }
be a fibre product of algebraic stacks. If \mathcal{Y}' \to \mathcal{Y} is surjective, flat, and locally of finite presentation and \mathcal{X}' is a gerbe over \mathcal{Y}', then \mathcal{X} is a gerbe over \mathcal{Y}.
Comments (0)
There are also: