Lemma 98.27.13. Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks. If $\mathcal{X}$ is a gerbe over $\mathcal{Y}$ then $f$ is a universal homeomorphism.

**Proof.**
By Lemma 98.27.3 the assumption on $f$ is preserved under base change. Hence it suffices to show that the map $|\mathcal{X}| \to |\mathcal{Y}|$ is a homeomorphism of topological spaces. Let $k$ be a field and let $y$ be an object of $\mathcal{Y}$ over $\mathop{\mathrm{Spec}}(k)$. By Stacks, Lemma 8.11.3 property (2)(a) there exists an fppf covering $\{ T_ i \to \mathop{\mathrm{Spec}}(k)\} $ and objects $x_ i$ of $\mathcal{X}$ over $T_ i$ with $f(x_ i) \cong y|_{T_ i}$. Choose an $i$ such that $T_ i \not= \emptyset $. Choose a morphism $\mathop{\mathrm{Spec}}(K) \to T_ i$ for some field $K$. Then $k \subset K$ and $x_ i|_ K$ is an object of $\mathcal{X}$ lying over $y|_ K$. Thus we see that $|\mathcal{Y}| \to |\mathcal{X}|$. is surjective. The map $|\mathcal{Y}| \to |\mathcal{X}|$ is also injective. Namely, if $x, x'$ are objects of $\mathcal{X}$ over $\mathop{\mathrm{Spec}}(k)$ whose images $f(x), f(x')$ become isomorphic (over an extension) in $\mathcal{Y}$, then Stacks, Lemma 8.11.3 property (2)(b) guarantees the existence of an extension of $k$ over which $x$ and $x'$ become isomorphic (details omitted). Hence $|\mathcal{X}| \to |\mathcal{Y}|$ is continuous and bijective and it suffices to show that it is also open. This follows from Lemmas 98.27.8 and 98.26.15.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: