The Stacks project

Lemma 101.28.8. Let $\pi : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks. If $\mathcal{X}$ is a gerbe over $\mathcal{Y}$, then $\pi $ is surjective, flat, and locally of finite presentation.

Proof. By Properties of Stacks, Lemma 100.5.4 and Lemmas 101.25.4 and 101.27.11 it suffices to prove to the lemma after replacing $\pi $ by a base change with a surjective, flat, locally finitely presented morphism $\mathcal{Y}' \to \mathcal{Y}$. By Lemma 101.28.7 we may assume $\mathcal{Y} = U$ is an algebraic space and $\mathcal{X} = [U/G]$ over $U$. Then $U \to [U/G]$ is surjective, flat, and locally of finite presentation, see Lemma 101.28.6. This implies that $\pi $ is surjective, flat, and locally of finite presentation by Properties of Stacks, Lemma 100.5.5 and Lemmas 101.25.5 and 101.27.12. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 101.28: Gerbes

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 06QI. Beware of the difference between the letter 'O' and the digit '0'.