Lemma 101.25.5. Let $\mathcal{X} \to \mathcal{Y} \to \mathcal{Z}$ be morphisms of algebraic stacks. If $\mathcal{X} \to \mathcal{Z}$ is flat and $\mathcal{X} \to \mathcal{Y}$ is surjective and flat, then $\mathcal{Y} \to \mathcal{Z}$ is flat.

**Proof.**
Choose an algebraic space $W$ and a surjective smooth morphism $W \to \mathcal{Z}$. Choose an algebraic space $V$ and a surjective smooth morphism $V \to W \times _\mathcal {Z} \mathcal{Y}$. Choose an algebraic space $U$ and a surjective smooth morphism $U \to V \times _\mathcal {Y} \mathcal{X}$. We know that $U \to V$ is flat and that $U \to W$ is flat. Also, as $\mathcal{X} \to \mathcal{Y}$ is surjective we see that $U \to V$ is surjective (as a composition of surjective morphisms). Hence the lemma reduces to the case of morphisms of algebraic spaces. The case of morphisms of algebraic spaces is Morphisms of Spaces, Lemma 67.31.5.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)