The Stacks project

Lemma 96.3.2. Let $f : \mathcal{X} \to \mathcal{Y}$ and $g : \mathcal{Y} \to \mathcal{Z}$ be $1$-morphisms of categories fibred in groupoids over $(\mathit{Sch}/S)_{fppf}$. Then $(g \circ f)^ p = f^ p \circ g^ p$ and there is a canonical isomorphism ${}_ p(g \circ f) \to {}_ pg \circ {}_ pf$ compatible with adjointness of $(f^ p, {}_ pf)$, $(g^ p, {}_ pg)$, and $((g \circ f)^ p, {}_ p(g \circ f))$.

Proof. Let $\mathcal{H}$ be a presheaf on $\mathcal{Z}$. Then $(g \circ f)^ p\mathcal{H} = f^ p (g^ p\mathcal{H})$ is given by the equalities

\[ (g \circ f)^ p\mathcal{H}(x) = \mathcal{H}((g \circ f)(x)) = \mathcal{H}(g(f(x))) = f^ p (g^ p\mathcal{H})(x). \]

We omit the verification that this is compatible with restriction maps.

Next, we define the transformation ${}_ p(g \circ f) \to {}_ pg \circ {}_ pf$. Let $\mathcal{F}$ be a presheaf on $\mathcal{X}$. If $z$ is an object of $\mathcal{Z}$ then we get a category $\mathcal{J}$ of quadruples $(x, f(x) \to y, y, g(y) \to z)$ and a category $\mathcal{I}$ of pairs $(x, g(f(x)) \to z)$. There is a canonical functor $\mathcal{J} \to \mathcal{I}$ sending the object $(x, \alpha : f(x) \to y, y, \beta : g(y) \to z)$ to $(x, \beta \circ f(\alpha ) : g(f(x)) \to z)$. This gives the arrow in

\begin{align*} ({}_ p(g \circ f)\mathcal{F})(z) & = \mathop{\mathrm{lim}}\nolimits _{g(f(x)) \to z} \mathcal{F}(x) \\ & = \mathop{\mathrm{lim}}\nolimits _\mathcal {I} \mathcal{F} \\ & \to \mathop{\mathrm{lim}}\nolimits _\mathcal {J} \mathcal{F} \\ & = \mathop{\mathrm{lim}}\nolimits _{g(y) \to z} \Big(\mathop{\mathrm{lim}}\nolimits _{f(x) \to y} \mathcal{F}(x)\Big) \\ & = ({}_ pg \circ {}_ pf\mathcal{F})(x) \end{align*}

by Categories, Lemma 4.14.9. We omit the verification that this is compatible with restriction maps. An alternative to this direct construction is to define ${}_ p(g \circ f) \cong {}_ pg \circ {}_ pf$ as the unique map compatible with the adjointness properties. This also has the advantage that one does not need to prove the compatibility.

Compatibility with adjointness of $(f^ p, {}_ pf)$, $(g^ p, {}_ pg)$, and $((g \circ f)^ p, {}_ p(g \circ f))$ means that given presheaves $\mathcal{H}$ and $\mathcal{F}$ as above we have a commutative diagram

\[ \xymatrix{ \mathop{\mathrm{Mor}}\nolimits _{\textit{PSh}(\mathcal{X})}(f^ pg^ p\mathcal{H}, \mathcal{F}) \ar@{=}[r] \ar@{=}[d] & \mathop{\mathrm{Mor}}\nolimits _{\textit{PSh}(\mathcal{Y})}(g^ p\mathcal{H}, {}_ pf\mathcal{F}) \ar@{=}[r] & \mathop{\mathrm{Mor}}\nolimits _{\textit{PSh}(\mathcal{Y})}(\mathcal{H}, {}_ pg{}_ pf\mathcal{F}) \\ \mathop{\mathrm{Mor}}\nolimits _{\textit{PSh}(\mathcal{X})}((g \circ f)^ p\mathcal{G}, \mathcal{F}) \ar@{=}[rr] & & \mathop{\mathrm{Mor}}\nolimits _{\textit{PSh}(\mathcal{Y})}(\mathcal{G}, {}_ p(g \circ f)\mathcal{F}) \ar[u] } \]

Proof omitted. $\square$


Comments (2)

Comment #32 by David Zureick-Brown on

Typo -- missing colon in

Comment #35 by Johan on

Fixed. Thanks!


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 06TL. Beware of the difference between the letter 'O' and the digit '0'.