The Stacks project

7.45 Pullback maps

It sometimes happens that a site $\mathcal{C}$ does not have a final object. In this case we define the global section functor as follows.

Definition 7.45.1. The global sections of a presheaf of sets $\mathcal{F}$ over a site $\mathcal{C}$ is the set

\[ \Gamma (\mathcal{C}, \mathcal{F}) = \mathop{\mathrm{Mor}}\nolimits _{\textit{PSh}(\mathcal{C})}(*, \mathcal{F}) \]

where $*$ is the final object in the category of presheaves on $\mathcal{C}$, i.e., the presheaf which associates to every object a singleton.

Of course the same definition applies to sheaves as well. Here is one way to compute global sections.

Lemma 7.45.2. Let $\mathcal{C}$ be a site. Let $a, b : V \to U$ be objects of $\mathcal{C}$ such that

\[ \xymatrix{ h_ V^\# \ar@<1ex>[r] \ar@<-1ex>[r] & h_ U^\# \ar[r] & {*} } \]

is a coequalizer in $\mathop{\mathit{Sh}}\nolimits (\mathcal{C})$. Then $\Gamma (\mathcal{C}, \mathcal{F})$ is the equalizer of $a^*, b^* : \mathcal{F}(U) \to \mathcal{F}(V)$.

Proof. Since $\mathop{\mathrm{Mor}}\nolimits _{\mathop{\mathit{Sh}}\nolimits (\mathcal{C})}(h_ U^\# , \mathcal{F}) = \mathcal{F}(U)$ this is clear from the definitions. $\square$

Now, let $f : \mathop{\mathit{Sh}}\nolimits (\mathcal{D}) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C})$ be a morphism of topoi. Then for any sheaf $\mathcal{F}$ on $\mathcal{C}$ there is a pullback map

\[ f^{-1} : \Gamma (\mathcal{C}, \mathcal{F}) \longrightarrow \Gamma (\mathcal{D}, f^{-1}\mathcal{F}) \]

Namely, as $f^{-1}$ is exact it transforms $*$ into $*$. Hence a global section $s$ of $\mathcal{F}$ over $\mathcal{C}$, which is a map of sheaves $s : * \to \mathcal{F}$, can be pulled back to $f^{-1}s : * = f^{-1}* \to f^{-1}\mathcal{F}$.

We can generalize this a bit by considering a pair of sheaves $\mathcal{F}$, $\mathcal{G}$ on $\mathcal{C}$, $\mathcal{D}$ together with a map $f^{-1}\mathcal{F} \to \mathcal{G}$. Then we compose the construction above with the obvious map $\Gamma (\mathcal{D}, f^{-1}\mathcal{F}) \to \Gamma (\mathcal{D}, \mathcal{G})$ to get a map

\[ \Gamma (\mathcal{C}, \mathcal{F}) \longrightarrow \Gamma (\mathcal{D}, \mathcal{G}) \]

This map is sometimes also called a pullback map.

A slightly more general construction which occurs frequently in nature is the following. Suppose that we have a commutative diagram of morphisms of topoi

\[ \xymatrix{ \mathop{\mathit{Sh}}\nolimits (\mathcal{D}) \ar[rd]_ h \ar[rr]_ f & & \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) \ar[ld]^ g \\ & \mathop{\mathit{Sh}}\nolimits (\mathcal{B}) } \]

Next, suppose that we have a sheaf $\mathcal{F}$ on $\mathcal{C}$. Then there is a pullback map

\[ f^{-1} : g_*\mathcal{F} \longrightarrow h_*f^{-1}\mathcal{F} \]

Namely, it is just the map coming from the identification $g_*f_*f^{-1}\mathcal{F} = h_*f^{-1}\mathcal{F}$ together with $g_*$ applied to the canonical map $\mathcal{F} \to f_*f^{-1}\mathcal{F}$. If $g$ is the identity, then this map on global sections agrees with the pullback map above.

In the situation of the previous paragraph, suppose we have a pair of sheaves $\mathcal{F}$, $\mathcal{G}$ on $\mathcal{C}$, $\mathcal{D}$ together with a map $f^{-1}\mathcal{F} \to \mathcal{G}$, then we compose the pullback map above with $h_*$ applied to $f^{-1}\mathcal{F} \to \mathcal{G}$ to get a map

\[ g_*\mathcal{F} \longrightarrow h_*\mathcal{G} \]

Restricting to sections over an object of $\mathcal{B}$ one recovers the “pullback map” on global sections discussed above (with suitable choices of sites).

An even more general situation is where we have a commutative diagram of topoi

\[ \xymatrix{ \mathop{\mathit{Sh}}\nolimits (\mathcal{D}) \ar[d]_ h \ar[r]_ f & \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) \ar[d]^ g \\ \mathop{\mathit{Sh}}\nolimits (\mathcal{B}) \ar[r]^ e & \mathop{\mathit{Sh}}\nolimits (\mathcal{A}) } \]

and a sheaf $\mathcal{G}$ on $\mathcal{C}$. Then there is a base change map

\[ e^{-1}g_*\mathcal{G} \longrightarrow h_*f^{-1}\mathcal{G}. \]

Namely, this map is adjoint to a map $g_*\mathcal{G} \to e_*h_*f^{-1}\mathcal{G} = (e \circ h)_*f^{-1}\mathcal{G}$ which is the pullback map just described.

Remark 7.45.3. Consider a commutative diagram

\[ \xymatrix{ \mathop{\mathit{Sh}}\nolimits (\mathcal{B}') \ar[r]_ k \ar[d]_{f'} & \mathop{\mathit{Sh}}\nolimits (\mathcal{B}) \ar[d]^ f \\ \mathop{\mathit{Sh}}\nolimits (\mathcal{C}') \ar[r]^ l \ar[d]_{g'} & \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) \ar[d]^ g \\ \mathop{\mathit{Sh}}\nolimits (\mathcal{D}') \ar[r]^ m & \mathop{\mathit{Sh}}\nolimits (\mathcal{D}) } \]

of topoi. Then the base change maps for the two squares compose to give the base change map for the outer rectangle. More precisely, the composition

\begin{align*} m^{-1} \circ (g \circ f)_* & = m^{-1} \circ g_* \circ f_* \\ & \to g'_* \circ l^{-1} \circ f_* \\ & \to g'_* \circ f'_* \circ k^{-1} \\ & = (g' \circ f')_* \circ k^{-1} \end{align*}

is the base change map for the rectangle. We omit the verification.

Remark 7.45.4. Consider a commutative diagram

\[ \xymatrix{ \mathop{\mathit{Sh}}\nolimits (\mathcal{C}'') \ar[r]_{g'} \ar[d]_{f''} & \mathop{\mathit{Sh}}\nolimits (\mathcal{C}') \ar[r]_ g \ar[d]_{f'} & \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) \ar[d]^ f \\ \mathop{\mathit{Sh}}\nolimits (\mathcal{D}'') \ar[r]^{h'} & \mathop{\mathit{Sh}}\nolimits (\mathcal{D}') \ar[r]^ h & \mathop{\mathit{Sh}}\nolimits (\mathcal{D}) } \]

of ringed topoi. Then the base change maps for the two squares compose to give the base change map for the outer rectangle. More precisely, the composition

\begin{align*} (h \circ h')^{-1} \circ f_* & = (h')^{-1} \circ h^{-1} \circ f_* \\ & \to (h')^{-1} \circ f'_* \circ g^{-1} \\ & \to f''_* \circ (g')^{-1} \circ g^{-1} \\ & = f”_* \circ (g \circ g')^{-1} \end{align*}

is the base change map for the rectangle. We omit the verification.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 06UM. Beware of the difference between the letter 'O' and the digit '0'.