Proof.
Let x \in F(B). The map p : B \to B[t, t^{-1}] is free hence we know that
F(B[t, t^{-1}]) = \bigoplus \nolimits _{k \in \mathbf{Z}} F(p)(F(B)) \cdot t^ k = \bigoplus \nolimits _{k \in \mathbf{Z}} F(B) \cdot t^ k
as indicated we drop the F(p) in the rest of the proof. Write F(a)(x) = \sum t^ k x_ k for some x_ k \in F(B). Denote \epsilon : B[t, t^{-1}] \to B the B-algebra map t \mapsto 1. Note that the compositions \epsilon \circ p, \epsilon \circ a : B \to B[t, t^{-1}] \to B are the identity. Hence we see that
x = F(\epsilon )(F(a)(x)) = F(\epsilon )(\sum t^ k x_ k) = \sum x_ k.
On the other hand, we claim that x_ k \in F(B)^{(k)}. Namely, consider the commutative diagram
\xymatrix{ B \ar[r]_ a \ar[d]_{a'} & B[t, t^{-1}] \ar[d]^ f \\ B[s, s^{-1}] \ar[r]^-g & B[t, s, t^{-1}, s^{-1}] }
where a'(b) = s^{\deg (b)}b, f(b) = b, f(t) = st and g(b) = t^{\deg (b)}b and g(s) = s. Then
F(g)(F(a'))(x) = F(g)(\sum s^ k x_ k) = \sum s^ k F(a)(x_ k)
and going the other way we see
F(f)(F(a))(x) = F(f)(\sum t^ k x_ k) = \sum (st)^ k x_ k.
Since B \to B[s, t, s^{-1}, t^{-1}] is free we see that F(B[t, s, t^{-1}, s^{-1}]) = \bigoplus _{k, l \in \mathbf{Z}} F(B) \cdot t^ ks^ l and comparing coefficients in the expressions above we find F(a)(x_ k) = t^ k x_ k as desired.
Finally, the image of F(B_0) \to F(B) is contained in F(B)^{(0)} because B_0 \to B \xrightarrow {a} B[t, t^{-1}] is equal to B_0 \to B \xrightarrow {p} B[t, t^{-1}].
\square
Comments (0)