The Stacks project

Lemma 35.10.2. Let $S$ be a scheme. Let $\tau \in \{ Zariski, \linebreak[0] {\acute{e}tale}, \linebreak[0] smooth, \linebreak[0] syntomic, \linebreak[0] fppf\} $. The functors

\[ \mathit{QCoh}(\mathcal{O}_ S) \longrightarrow \textit{Mod}((\mathit{Sch}/S)_\tau , \mathcal{O}) \quad \text{and}\quad \mathit{QCoh}(\mathcal{O}_ S) \longrightarrow \textit{Mod}(S_\tau , \mathcal{O}) \]

defined by the rule $\mathcal{F} \mapsto \mathcal{F}^ a$ seen in Proposition 35.8.9 are

  1. fully faithful,

  2. compatible with direct sums,

  3. compatible with colimits,

  4. right exact,

  5. exact as a functor $\mathit{QCoh}(\mathcal{O}_ S) \to \textit{Mod}(S_{\acute{e}tale}, \mathcal{O})$,

  6. not exact as a functor $\mathit{QCoh}(\mathcal{O}_ S) \to \textit{Mod}((\mathit{Sch}/S)_\tau , \mathcal{O})$ in general,

  7. given two quasi-coherent $\mathcal{O}_ S$-modules $\mathcal{F}$, $\mathcal{G}$ we have $(\mathcal{F} \otimes _{\mathcal{O}_ S} \mathcal{G})^ a = \mathcal{F}^ a \otimes _\mathcal {O} \mathcal{G}^ a$,

  8. if $\tau = {\acute{e}tale}$ or $\tau = Zariski$, given two quasi-coherent $\mathcal{O}_ S$-modules $\mathcal{F}$, $\mathcal{G}$ such that $\mathcal{F}$ is of finite presentation we have $(\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ S}(\mathcal{F}, \mathcal{G}))^ a = \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}^ a, \mathcal{G}^ a)$ in $\textit{Mod}(S_\tau , \mathcal{O})$,

  9. given two quasi-coherent $\mathcal{O}_ S$-modules $\mathcal{F}$, $\mathcal{G}$ we do not have $(\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ S}(\mathcal{F}, \mathcal{G}))^ a = \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}^ a, \mathcal{G}^ a)$ in $\textit{Mod}((\mathit{Sch}/S)_\tau , \mathcal{O})$ in general even if $\mathcal{F}$ is of finite presentation, and

  10. given a short exact sequence $0 \to \mathcal{F}_1^ a \to \mathcal{E} \to \mathcal{F}_2^ a \to 0$ of $\mathcal{O}$-modules then $\mathcal{E}$ is quasi-coherent1, i.e., $\mathcal{E}$ is in the essential image of the functor.

Proof. Part (1) we saw in Proposition 35.8.9.

We have seen in Schemes, Section 26.24 that a colimit of quasi-coherent sheaves on a scheme is a quasi-coherent sheaf. Moreover, in Remark 35.8.6 we saw that $\mathcal{F} \mapsto \mathcal{F}^ a$ is the pullback functor for a morphism of ringed sites, hence commutes with all colimits, see Modules on Sites, Lemma 18.14.3. Thus (3) and its special case (3) hold.

This also shows that the functor is right exact (i.e., commutes with finite colimits), hence (4).

The functor $\mathit{QCoh}(\mathcal{O}_ S) \to \mathit{QCoh}(S_{\acute{e}tale}, \mathcal{O})$, $\mathcal{F} \mapsto \mathcal{F}^ a$ is left exact because an étale morphism is flat, see Morphisms, Lemma 29.36.12. This proves (5).

To see (6), suppose that $S = \mathop{\mathrm{Spec}}(\mathbf{Z})$. Then $2 : \mathcal{O}_ S \to \mathcal{O}_ S$ is injective but the associated map of $\mathcal{O}$-modules on $(\mathit{Sch}/S)_\tau $ isn't injective because $2 : \mathbf{F}_2 \to \mathbf{F}_2$ isn't injective and $\mathop{\mathrm{Spec}}(\mathbf{F}_2)$ is an object of $(\mathit{Sch}/S)_\tau $.

Part (7) holds because, as mentioned above, the functor $\mathcal{F} \mapsto \mathcal{F}^ a$ is the pullback functor for a morphism of ringed sites and such commute with tensor products by Modules on Sites, Lemma 18.26.2.

Part (8) is obvious if $\tau = Zariski$ because the category of $\mathcal{O}$-modules on $S_{Zar}$ is the same as the category of $\mathcal{O}_ S$-modules on the topological space $S$. If $\tau = {\acute{e}tale}$ then (8) holds because, as mentioned above, the functor $\mathcal{F} \mapsto \mathcal{F}^ a$ is the pullback functor for the flat morphism of ringed sites $(S_{\acute{e}tale}, \mathcal{O}) \to (S_{Zar}, \mathcal{O}_ S)$, see Lemma 35.10.1. Pullback by flat morphisms of ringed sites commutes with taking internal hom out of a finitely presented module by Modules on Sites, Lemma 18.31.4.

To see (9), suppose that $S = \mathop{\mathrm{Spec}}(\mathbf{Z})$. Let $\mathcal{F} = \mathop{\mathrm{Coker}}(2 : \mathcal{O}_ S \to \mathcal{O}_ S)$ and $\mathcal{G} = \mathcal{O}_ S$. Then $\mathcal{F}^ a = \mathop{\mathrm{Coker}}(2 : \mathcal{O} \to \mathcal{O})$ and $\mathcal{G}^ a = \mathcal{O}$. Hence $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}^ a, \mathcal{G}^ a) = \mathcal{O}[2]$ is equal to the $2$-torsion in $\mathcal{O}$, which is not zero, see proof of (6). On the other hand, the module $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ S}(\mathcal{F}, \mathcal{G})$ is zero.

Proof of (10). Let $0 \to \mathcal{F}_1^ a \to \mathcal{E} \to \mathcal{F}_2^ a \to 0$ be a short exact sequence of $\mathcal{O}$-modules with $\mathcal{F}_1$ and $\mathcal{F}_2$ quasi-coherent on $S$. Consider the restriction

\[ 0 \to \mathcal{F}_1 \to \mathcal{E}|_{S_{Zar}} \to \mathcal{F}_2 \]

to $S_{Zar}$. By Proposition 35.9.3 we see that on any affine $U \subset S$ we have $H^1(U, \mathcal{F}_1^ a) = H^1(U, \mathcal{F}_1) = 0$. Hence the sequence above is also exact on the right. By Schemes, Section 26.24 we conclude that $\mathcal{F} = \mathcal{E}|_{S_{Zar}}$ is quasi-coherent. Thus we obtain a commutative diagram

\[ \xymatrix{ & \mathcal{F}_1^ a \ar[r] \ar[d] & \mathcal{F}^ a \ar[r] \ar[d] & \mathcal{F}_2^ a \ar[r] \ar[d] & 0 \\ 0 \ar[r] & \mathcal{F}_1^ a \ar[r] & \mathcal{E} \ar[r] & \mathcal{F}_2^ a \ar[r] & 0 } \]

To finish the proof it suffices to show that the top row is also right exact. To do this, denote once more $U = \mathop{\mathrm{Spec}}(A) \subset S$ an affine open of $S$. We have seen above that $0 \to \mathcal{F}_1(U) \to \mathcal{E}(U) \to \mathcal{F}_2(U) \to 0$ is exact. For any affine scheme $V/U$, $V = \mathop{\mathrm{Spec}}(B)$ the map $\mathcal{F}_1^ a(V) \to \mathcal{E}(V)$ is injective. We have $\mathcal{F}_1^ a(V) = \mathcal{F}_1(U) \otimes _ A B$ by definition. The injection $\mathcal{F}_1^ a(V) \to \mathcal{E}(V)$ factors as

\[ \mathcal{F}_1(U) \otimes _ A B \to \mathcal{E}(U) \otimes _ A B \to \mathcal{E}(U) \]

Considering $A$-algebras $B$ of the form $B = A \oplus M$ we see that $\mathcal{F}_1(U) \to \mathcal{E}(U)$ is universally injective (see Algebra, Definition 10.82.1). Since $\mathcal{E}(U) = \mathcal{F}(U)$ we conclude that $\mathcal{F}_1 \to \mathcal{F}$ remains injective after any base change, or equivalently that $\mathcal{F}_1^ a \to \mathcal{F}^ a$ is injective. $\square$

[1] Warning: This is misleading. See part (6).

Comments (2)

Comment #8505 by ZL on

There is a typo: the last sentence of the second paragraph should be "Thus and its special case hold." I am also a little confused about the statement of and . What does "compatible with colimits" mean? Does it mean that commutes with colimits?

Comment #8506 by ZL on

Sorry for the consecutive posts, there are other two possible typos.

In the fourth paragraph, "" should be "".

In the last paragraph, "" should be ""


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 06VE. Beware of the difference between the letter 'O' and the digit '0'.