Proof.
The corresponding facts hold for quasi-coherent modules on the scheme S, see Schemes, Section 26.24. The proof will be to use Lemma 35.10.2 to transfer these truths to S_{\acute{e}tale}.
Proof of (1). Let \mathcal{F}_ i, i \in I be a family of objects of \mathit{QCoh}(S_{\acute{e}tale}, \mathcal{O}). Write \mathcal{F}_ i = \mathcal{G}_ i^ a for some quasi-coherent modules \mathcal{G}_ i on S. Then \bigoplus \mathcal{F}_ i = (\bigoplus \mathcal{G}_ i)^ a by the lemma cited and we conclude.
Proof of (2). Let \mathcal{I} \to \mathit{QCoh}(S_{\acute{e}tale}, \mathcal{O}), i \mapsto \mathcal{F}_ i be a diagram. Write \mathcal{F}_ i = \mathcal{G}_ i^ a so we get a diagram \mathcal{I} \to \mathit{QCoh}(\mathcal{O}_ S). Then \mathop{\mathrm{colim}}\nolimits \mathcal{F}_ i = (\mathop{\mathrm{colim}}\nolimits \mathcal{G}_ i)^ a by the lemma cited and we conclude.
Proof of (3). Let a : \mathcal{F} \to \mathcal{F}' be an arrow of \mathit{QCoh}(S_{\acute{e}tale}, \mathcal{O}). Write a = b^ a for some map b : \mathcal{G} \to \mathcal{G}' of quasi-coherent modules on S. By the lemma cited we have \mathop{\mathrm{Ker}}(a) = \mathop{\mathrm{Ker}}(b)^ a and \mathop{\mathrm{Coker}}(a) = \mathop{\mathrm{Coker}}(b)^ a and we conclude.
Proof of (4). This follows from (3) except in the case when we know \mathcal{F}_1 and \mathcal{F}_3 are quasi-coherent. In this case write \mathcal{F}_1 = \mathcal{G}_1^ a and \mathcal{F}_3 = \mathcal{G}_3^ a with \mathcal{G}_ i quasi-coherent on S. By Lemma 35.10.2 part (10) we conclude.
Proof of (5). Let \mathcal{F} and \mathcal{F}' be in \mathit{QCoh}(S_{\acute{e}tale}, \mathcal{O}). Write \mathcal{F} = \mathcal{G}^ a and \mathcal{F}' = (\mathcal{G}')^ a with \mathcal{G} and \mathcal{G}' quasi-coherent on S. By the lemma cited we have \mathcal{F} \otimes _\mathcal {O} \mathcal{F}' = (\mathcal{G} \otimes _{\mathcal{O}_ S} \mathcal{G}')^ a and we conclude.
Proof of (6). Let \mathcal{F} and \mathcal{G} be in \mathit{QCoh}(S_{\acute{e}tale}, \mathcal{O}) with \mathcal{F} of finite presentation. Write \mathcal{F} = \mathcal{H}^ a and \mathcal{G} = (\mathcal{I})^ a with \mathcal{H} and \mathcal{I} quasi-coherent on S. By Lemma 35.8.10 we see that \mathcal{H} is of finite presentation. By Lemma 35.10.2 part (8) we have \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G}) = (\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ S}(\mathcal{H}, \mathcal{I}))^ a and we conclude.
\square
Comments (0)