The Stacks project

Lemma 12.10.7. Let $\mathcal{A}$, $\mathcal{B}$ be abelian categories. Let $F : \mathcal{A} \to \mathcal{B}$ be an exact functor. Let $\mathcal{C} \subset \mathcal{A}$ be a Serre subcategory contained in the kernel of $F$. Then $\mathcal{C} = \mathop{\mathrm{Ker}}(F)$ if and only if the induced functor $\overline{F} : \mathcal{A}/\mathcal{C} \to \mathcal{B}$ (Lemma 12.10.6) is faithful.

Proof. We will use the results of Lemma 12.10.6 without further mention. The “only if” direction is true because the kernel of $\overline{F}$ is zero by construction. Namely, if $f : X \to Y$ is a morphism in $\mathcal{A}/\mathcal{C}$ such that $\overline{F}(f) = 0$, then $\overline{F}(\mathop{\mathrm{Im}}(f)) = \mathop{\mathrm{Im}}(\overline{F}(f)) = 0$, hence $\mathop{\mathrm{Im}}(f) = 0$ by the assumption on the kernel of $F$. Thus $f = 0$.

For the “if” direction, let $X$ be an object of $\mathcal{A}$ such that $F(X) = 0$. Then $\overline{F}(\text{id}_ X) = \text{id}_{\overline{F}(X)} = 0$, thus $\text{id}_ X = 0$ in $\mathcal{A}/\mathcal{C}$ by faithfulness of $\overline{F}$. Hence $X = 0$ in $\mathcal{A}/\mathcal{C}$, that is $X \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$. $\square$

Comments (2)

Comment #5396 by ykm on

minor suggestion: in statement of lemma 06XK specify what C is - i assume hypothesis from the previous lemma that C is a serre subcategory of A carries over. i was initially confused whether C=ker(F) was a definition of C.

There are also:

  • 20 comment(s) on Section 12.10: Serre subcategories

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 06XK. Beware of the difference between the letter 'O' and the digit '0'.