Lemma 13.27.3. Let \mathcal{A} be an abelian category.
Let X, Y be objects of D(\mathcal{A}). Given a, b \in \mathbf{Z} such that H^ i(X) = 0 for i > a and H^ j(Y) = 0 for j < b, we have \mathop{\mathrm{Ext}}\nolimits ^ n_\mathcal {A}(X, Y) = 0 for n < b - a and
\mathop{\mathrm{Ext}}\nolimits ^{b - a}_\mathcal {A}(X, Y) = \mathop{\mathrm{Hom}}\nolimits _\mathcal {A}(H^ a(X), H^ b(Y))Let A, B \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{A}). For i < 0 we have \mathop{\mathrm{Ext}}\nolimits ^ i_\mathcal {A}(B, A) = 0. We have \mathop{\mathrm{Ext}}\nolimits ^0_\mathcal {A}(B, A) = \mathop{\mathrm{Hom}}\nolimits _\mathcal {A}(B, A).
Comments (0)