Loading [MathJax]/extensions/tex2jax.js

The Stacks project

Definition 13.27.4. Let $\mathcal{A}$ be an abelian category. Let $A, B \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{A})$. A degree $i$ Yoneda extension of $B$ by $A$ is an exact sequence

\[ E : 0 \to A \to Z_{i - 1} \to Z_{i - 2} \to \ldots \to Z_0 \to B \to 0 \]

in $\mathcal{A}$. We say two Yoneda extensions $E$ and $E'$ of the same degree are equivalent if there exists a commutative diagram

\[ \xymatrix{ 0 \ar[r] & A \ar[r] & Z_{i - 1} \ar[r] & \ldots \ar[r] & Z_0 \ar[r] & B \ar[r] & 0 \\ 0 \ar[r] & A \ar[r] \ar[u]^{\text{id}} \ar[d]_{\text{id}} & Z''_{i - 1} \ar[r] \ar[u] \ar[d] & \ldots \ar[r] & Z''_0 \ar[r] \ar[u] \ar[d] & B \ar[r] \ar[u]_{\text{id}} \ar[d]^{\text{id}} & 0 \\ 0 \ar[r] & A \ar[r] & Z'_{i - 1} \ar[r] & \ldots \ar[r] & Z'_0 \ar[r] & B \ar[r] & 0 } \]

where the middle row is a Yoneda extension as well.


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.