Processing math: 100%

The Stacks project

Lemma 13.31.6. Let \mathcal{A} be an abelian category. Let F : K(\mathcal{A}) \to \mathcal{D}' be an exact functor of triangulated categories. Then RF is defined at every complex in K(\mathcal{A}) which is quasi-isomorphic to a K-injective complex. In fact, every K-injective complex computes RF.

Proof. By Lemma 13.14.4 it suffices to show that RF is defined at a K-injective complex, i.e., it suffices to show a K-injective complex I^\bullet computes RF. Any quasi-isomorphism I^\bullet \to N^\bullet is a homotopy equivalence as it has an inverse by Lemma 13.31.2. Thus I^\bullet \to I^\bullet is a final object of I^\bullet /\text{Qis}(\mathcal{A}) and we win. \square


Comments (1)

Comment #9464 by on

For anyone that might care: from Lemma 13.31.2 we get that is bijective. In particular, has a left inverse. This alone already implies that is a final object of .

Even though one does not need it in the proof, actually is invertible in . Bijectivity of \eqref{1} means that has a unique left inverse, and this implies existence of an inverse in a preadditive category. The dual result is proven here.

There are also:

  • 5 comment(s) on Section 13.31: K-injective complexes

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.