Proof.
We use the description of $j_{U!}\mathcal{G}$ as the sheaf associated to the presheaf $V \mapsto \bigoplus \nolimits _{\varphi \in \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(V, U)} \mathcal{G}(V/_\varphi U)$ of Lemma 18.19.2. The stalk of $j_{U!}\mathcal{G}$ at $p$ is equal to the stalk of this presheaf, see Lemma 18.36.3. Let $u : \mathcal{C} \to \textit{Sets}$ be the functor corresponding to $p$ (see Sites, Section 7.32). Hence we see that
\[ (j_{U!}\mathcal{G})_ p = \mathop{\mathrm{colim}}\nolimits _{(V, y)} \bigoplus \nolimits _{\varphi : V \to U} \mathcal{G}(V/_\varphi U) \]
where the colimit is taken in the category of abelian groups. To a quadruple $(V, y, \varphi , s)$ occurring in this colimit, we can assign $x = u(\varphi )(y) \in u(U)$. Hence we obtain
\[ (j_{U!}\mathcal{G})_ p = \bigoplus \nolimits _{x \in u(U)} \mathop{\mathrm{colim}}\nolimits _{(\varphi : V \to U, y), \ u(\varphi )(y) = x} \mathcal{G}(V/_\varphi U). \]
This is equal to the expression of the lemma by the description of the points $q$ lying over $x$ in Sites, Lemma 7.35.2.
$\square$
Comments (0)