Lemma 68.6.3. Let $S$ be a scheme. Let $f : U \to X$ be a surjective étale morphism of algebraic spaces over $S$. Let $\mathcal{F}$ be an object of $\textit{Ab}(X_{\acute{e}tale})$. There exists a canonical map

$\check{\mathcal{C}}^\bullet _{alt}(f, \mathcal{F}) \longrightarrow R\Gamma (X, \mathcal{F})$

in $D(\textit{Ab})$. Moreover, there is a spectral sequence with $E_1$-page

$E_1^{p, q} = \mathop{\mathrm{Ext}}\nolimits _{\textit{Ab}(X_{\acute{e}tale})}^ q(K^ p, \mathcal{F})$

converging to $H^{p + q}(X, \mathcal{F})$ where $K^ p = \wedge ^{p + 1}f_!\underline{\mathbf{Z}}$.

Proof. Recall that we have the quasi-isomorphism $K^\bullet \to \underline{\mathbf{Z}}[0]$, see (68.6.1.1). Choose an injective resolution $\mathcal{F} \to \mathcal{I}^\bullet$ in $\textit{Ab}(X_{\acute{e}tale})$. Consider the double complex $\mathop{\mathrm{Hom}}\nolimits (K^\bullet , \mathcal{I}^\bullet )$ with terms $\mathop{\mathrm{Hom}}\nolimits (K^ p, \mathcal{I}^ q)$. The differential $d_1^{p, q} : A^{p, q} \to A^{p + 1, q}$ is the one coming from the differential $K^{p + 1} \to K^ p$ and the differential $d_2^{p, q} : A^{p, q} \to A^{p, q + 1}$ is the one coming from the differential $\mathcal{I}^ q \to \mathcal{I}^{q + 1}$. Denote $\text{Tot}(\mathop{\mathrm{Hom}}\nolimits (K^\bullet , \mathcal{I}^\bullet ))$ the associated total complex, see Homology, Section 12.18. We will use the two spectral sequences $({}'E_ r, {}'d_ r)$ and $({}''E_ r, {}''d_ r)$ associated to this double complex, see Homology, Section 12.25.

Because $K^\bullet$ is a resolution of $\underline{\mathbf{Z}}$ we see that the complexes

$\mathop{\mathrm{Hom}}\nolimits (K^\bullet , \mathcal{I}^ q) : \mathop{\mathrm{Hom}}\nolimits (K^0, \mathcal{I}^ q) \to \mathop{\mathrm{Hom}}\nolimits (K^1, \mathcal{I}^ q) \to \mathop{\mathrm{Hom}}\nolimits (K^2, \mathcal{I}^ q) \to \ldots$

are acyclic in positive degrees and have $H^0$ equal to $\Gamma (X, \mathcal{I}^ q)$. Hence by Homology, Lemma 12.25.4 the natural map

$\mathcal{I}^\bullet (X) \longrightarrow \text{Tot}(\mathop{\mathrm{Hom}}\nolimits (K^\bullet , \mathcal{I}^\bullet ))$

is a quasi-isomorphism of complexes of abelian groups. In particular we conclude that $H^ n(\text{Tot}(\mathop{\mathrm{Hom}}\nolimits (K^\bullet , \mathcal{I}^\bullet ))) = H^ n(X, \mathcal{F})$.

The map $\check{\mathcal{C}}^\bullet _{alt}(f, \mathcal{F}) \to R\Gamma (X, \mathcal{F})$ of the lemma is the composition of $\check{\mathcal{C}}^\bullet _{alt}(f, \mathcal{F}) \to \text{Tot}(\mathop{\mathrm{Hom}}\nolimits (K^\bullet , \mathcal{I}^\bullet ))$ with the inverse of the displayed quasi-isomorphism.

Finally, consider the spectral sequence $({}'E_ r, {}'d_ r)$. We have

$E_1^{p, q} = q\text{th cohomology of } \mathop{\mathrm{Hom}}\nolimits (K^ p, \mathcal{I}^0) \to \mathop{\mathrm{Hom}}\nolimits (K^ p, \mathcal{I}^1) \to \mathop{\mathrm{Hom}}\nolimits (K^ p, \mathcal{I}^2) \to \ldots$

This proves the lemma. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0725. Beware of the difference between the letter 'O' and the digit '0'.