Definition 69.6.2. Let $S$ be a scheme. Let $f : U \to X$ be a surjective étale morphism of algebraic spaces over $S$. Let $\mathcal{F}$ be an object of $\textit{Ab}(X_{\acute{e}tale})$. The alternating Čech complex1 $\check{\mathcal{C}}^\bullet _{alt}(f, \mathcal{F})$ associated to $\mathcal{F}$ and $f$ is the complex
\[ \mathop{\mathrm{Hom}}\nolimits (K^0, \mathcal{F}) \to \mathop{\mathrm{Hom}}\nolimits (K^1, \mathcal{F}) \to \mathop{\mathrm{Hom}}\nolimits (K^2, \mathcal{F}) \to \ldots \]
with Hom groups computed in $\textit{Ab}(X_{\acute{e}tale})$.
Comments (0)