Lemma 21.15.1. Let

\[ \xymatrix{ (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}_{\mathcal{C}'}) \ar[r]_{g'} \ar[d]_{f'} & (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C}) \ar[d]^ f \\ (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}'), \mathcal{O}_{\mathcal{D}'}) \ar[r]^ g & (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D}) } \]

be a commutative diagram of ringed topoi. Let $\mathcal{F}^\bullet $ be a bounded below complex of $\mathcal{O}_\mathcal {C}$-modules. Assume both $g$ and $g'$ are flat. Then there exists a canonical base change map

\[ g^*Rf_*\mathcal{F}^\bullet \longrightarrow R(f')_*(g')^*\mathcal{F}^\bullet \]

in $D^{+}(\mathcal{O}_{\mathcal{D}'})$.

**Proof.**
Choose injective resolutions $\mathcal{F}^\bullet \to \mathcal{I}^\bullet $ and $(g')^*\mathcal{F}^\bullet \to \mathcal{J}^\bullet $. By Lemma 21.14.2 we see that $(g')_*\mathcal{J}^\bullet $ is a complex of injectives representing $R(g')_*(g')^*\mathcal{F}^\bullet $. Hence by Derived Categories, Lemmas 13.18.6 and 13.18.7 the arrow $\beta $ in the diagram

\[ \xymatrix{ (g')_*(g')^*\mathcal{F}^\bullet \ar[r] & (g')_*\mathcal{J}^\bullet \\ \mathcal{F}^\bullet \ar[u]^{adjunction} \ar[r] & \mathcal{I}^\bullet \ar[u]_\beta } \]

exists and is unique up to homotopy. Pushing down to $\mathcal{D}$ we get

\[ f_*\beta : f_*\mathcal{I}^\bullet \longrightarrow f_*(g')_*\mathcal{J}^\bullet = g_*(f')_*\mathcal{J}^\bullet \]

By adjunction of $g^*$ and $g_*$ we get a map of complexes $g^*f_*\mathcal{I}^\bullet \to (f')_*\mathcal{J}^\bullet $. Note that this map is unique up to homotopy since the only choice in the whole process was the choice of the map $\beta $ and everything was done on the level of complexes.
$\square$

## Comments (0)

There are also: