Processing math: 100%

The Stacks project

Lemma 21.15.1. Let

\xymatrix{ (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}_{\mathcal{C}'}) \ar[r]_{g'} \ar[d]_{f'} & (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C}) \ar[d]^ f \\ (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}'), \mathcal{O}_{\mathcal{D}'}) \ar[r]^ g & (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D}) }

be a commutative diagram of ringed topoi. Let \mathcal{F}^\bullet be a bounded below complex of \mathcal{O}_\mathcal {C}-modules. Assume both g and g' are flat. Then there exists a canonical base change map

g^*Rf_*\mathcal{F}^\bullet \longrightarrow R(f')_*(g')^*\mathcal{F}^\bullet

in D^{+}(\mathcal{O}_{\mathcal{D}'}).

Proof. Choose injective resolutions \mathcal{F}^\bullet \to \mathcal{I}^\bullet and (g')^*\mathcal{F}^\bullet \to \mathcal{J}^\bullet . By Lemma 21.14.2 we see that (g')_*\mathcal{J}^\bullet is a complex of injectives representing R(g')_*(g')^*\mathcal{F}^\bullet . Hence by Derived Categories, Lemmas 13.18.6 and 13.18.7 the arrow \beta in the diagram

\xymatrix{ (g')_*(g')^*\mathcal{F}^\bullet \ar[r] & (g')_*\mathcal{J}^\bullet \\ \mathcal{F}^\bullet \ar[u]^{adjunction} \ar[r] & \mathcal{I}^\bullet \ar[u]_\beta }

exists and is unique up to homotopy. Pushing down to \mathcal{D} we get

f_*\beta : f_*\mathcal{I}^\bullet \longrightarrow f_*(g')_*\mathcal{J}^\bullet = g_*(f')_*\mathcal{J}^\bullet

By adjunction of g^* and g_* we get a map of complexes g^*f_*\mathcal{I}^\bullet \to (f')_*\mathcal{J}^\bullet . Note that this map is unique up to homotopy since the only choice in the whole process was the choice of the map \beta and everything was done on the level of complexes. \square


Comments (0)

There are also:

  • 2 comment(s) on Section 21.15: The base change map

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.