The Stacks project

69.5 Colimits and cohomology

The following lemma in particular applies to diagrams of quasi-coherent sheaves.

Lemma 69.5.1. Let $S$ be a scheme. Let $X$ be an algebraic space over $S$. If $X$ is quasi-compact and quasi-separated, then

\[ \mathop{\mathrm{colim}}\nolimits _ i H^ p(X, \mathcal{F}_ i) \longrightarrow H^ p(X, \mathop{\mathrm{colim}}\nolimits _ i \mathcal{F}_ i) \]

is an isomorphism for every filtered diagram of abelian sheaves on $X_{\acute{e}tale}$.

Proof. This follows from Cohomology on Sites, Lemma 21.16.1. Namely, let $\mathcal{B} \subset \mathop{\mathrm{Ob}}\nolimits (X_{spaces, {\acute{e}tale}})$ be the set of quasi-compact and quasi-separated spaces étale over $X$. Note that if $U \in \mathcal{B}$ then, because $U$ is quasi-compact, the collection of finite coverings $\{ U_ i \to U\} $ with $U_ i \in \mathcal{B}$ is cofinal in the set of coverings of $U$ in $X_{spaces, {\acute{e}tale}}$. By Morphisms of Spaces, Lemma 67.8.10 the set $\mathcal{B}$ satisfies all the assumptions of Cohomology on Sites, Lemma 21.16.1. Since $X \in \mathcal{B}$ we win. $\square$

slogan

Lemma 69.5.2. Let $S$ be a scheme. Let $f : X \to Y$ be a quasi-compact and quasi-separated morphism of algebraic spaces over $S$. Let $\mathcal{F} = \mathop{\mathrm{colim}}\nolimits \mathcal{F}_ i$ be a filtered colimit of abelian sheaves on $X_{\acute{e}tale}$. Then for any $p \geq 0$ we have

\[ R^ pf_*\mathcal{F} = \mathop{\mathrm{colim}}\nolimits R^ pf_*\mathcal{F}_ i. \]

Proof. We will use that the morphism of topoi $f_{small} : X_{small} \to Y_{small}$ comes from the morphism of sites $f_{spaces, {\acute{e}tale}} : X_{spaces, {\acute{e}tale}} \to Y_{spaces, {\acute{e}tale}}$ corresponding to the continuous functor $V \longmapsto X \times _ Y V$, see Properties of Spaces, Lemma 66.18.8. We will apply Cohomology on Sites, Lemma 21.16.4 to this morphism of sites. Since every object of $Y_{spaces, {\acute{e}tale}}$ has a covering by affine objects, it suffices to show that for $V$ affine and étale over $Y$ we have $H^ p(X \times _ Y V, \mathcal{F}) = \mathop{\mathrm{colim}}\nolimits H^ p(X \times _ Y V, \mathcal{F}_ i)$. Since $V$ is affine, the algebraic space $X \times _ Y V$ is quasi-compact and quasi-separated. Hence we can apply Lemma 69.5.1 to conclude. $\square$

The following lemma tells us that finitely presented modules behave as expected in quasi-compact and quasi-separated algebraic spaces.

Lemma 69.5.3. Let $S$ be a scheme. Let $X$ be a quasi-compact and quasi-separated algebraic space over $S$. Let $I$ be a directed set and let $(\mathcal{F}_ i, \varphi _{ii'})$ be a system over $I$ of $\mathcal{O}_ X$-modules. Let $\mathcal{G}$ be an $\mathcal{O}_ X$-module of finite presentation. Then we have

\[ \mathop{\mathrm{colim}}\nolimits _ i \mathop{\mathrm{Hom}}\nolimits _ X(\mathcal{G}, \mathcal{F}_ i) = \mathop{\mathrm{Hom}}\nolimits _ X(\mathcal{G}, \mathop{\mathrm{colim}}\nolimits _ i \mathcal{F}_ i). \]

In particular, $\mathop{\mathrm{Hom}}\nolimits _ X(\mathcal{G}, -)$ commutes with filtered colimits in $\mathit{QCoh}(\mathcal{O}_ X)$.

Proof. The displayed equality is a special case of Modules on Sites, Lemma 18.27.12. In order to apply it, we need to check the hypotheses of Sites, Lemma 7.17.8 part (4) for the site $X_{\acute{e}tale}$. In order to do this, we will check hypotheses (2)(a), (2)(b), (2)(c) of Sites, Remark 7.17.9. Namely, let $\mathcal{B} \subset \mathop{\mathrm{Ob}}\nolimits (X_{\acute{e}tale})$ be the set of affine objects. Then

  1. Since $X$ is quasi-compact, there exists a $U \in \mathcal{B}$ such that $U \to X$ is surjective (Properties of Spaces, Lemma 66.6.3), hence $h_ U^\# \to *$ is surjective.

  2. For $U \in \mathcal{B}$ every étale covering $\{ U_ i \to U\} _{i \in I}$ of $U$ can be refined by a finite étale covering $\{ U_ j \to U\} _{j = 1, \ldots , m}$ with $U_ j \in \mathcal{B}$ (Topologies, Lemma 34.4.4).

  3. For $U, U' \in \mathop{\mathrm{Ob}}\nolimits (X_{\acute{e}tale})$ we have $h_ U^\# \times h_{U'}^\# = h_{U \times _ X U'}^\# $. If $U, U' \in \mathcal{B}$, then $U \times _ X U'$ is quasi-compact because $X$ is quasi-separated, see Morphisms of Spaces, Lemma 67.8.10 for example. Hence we can find a surjective étale morphism $U'' \to U \times _ X U'$ with $U'' \in \mathcal{B}$ (Properties of Spaces, Lemma 66.6.3). In other words, we have morphisms $U'' \to U$ and $U'' \to U'$ such that the map $h_{U''}^\# \to h_ U^\# \times h_{u'}^\# $ is surjective.

For the final statement, observe that the inclusion functor $\mathit{QCoh}(\mathcal{O}_ X) \to \textit{Mod}(\mathcal{O}_ X)$ commutes with colimits and that finitely presented modules are quasi-coherent. See Properties of Spaces, Lemma 66.29.7. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 073D. Beware of the difference between the letter 'O' and the digit '0'.