Lemma 77.12.5. Let $B \to S$ be as in Section 77.3. Let $(U, R, s, t, c)$ be a groupoid in algebraic spaces over $B$. The category of quasi-coherent modules on $(U, R, s, t, c)$ has colimits.

Proof. Let $i \mapsto (\mathcal{F}_ i, \alpha _ i)$ be a diagram over the index category $\mathcal{I}$. We can form the colimit $\mathcal{F} = \mathop{\mathrm{colim}}\nolimits \mathcal{F}_ i$ which is a quasi-coherent sheaf on $U$, see Properties of Spaces, Lemma 65.29.7. Since colimits commute with pullback we see that $s^*\mathcal{F} = \mathop{\mathrm{colim}}\nolimits s^*\mathcal{F}_ i$ and similarly $t^*\mathcal{F} = \mathop{\mathrm{colim}}\nolimits t^*\mathcal{F}_ i$. Hence we can set $\alpha = \mathop{\mathrm{colim}}\nolimits \alpha _ i$. We omit the proof that $(\mathcal{F}, \alpha )$ is the colimit of the diagram in the category of quasi-coherent modules on $(U, R, s, t, c)$. $\square$

There are also:

• 2 comment(s) on Section 77.12: Quasi-coherent sheaves on groupoids

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).